
Semantics of Probabilistic Program Traces
Alexander K. Lew

MIT
alexlew@mit.edu

Eli Sennesh
Northeastern University
esennesh@ccs.neu.edu

Jan-Willem van de Meent
University of Amsterdam
j.w.vandemeent@uva.nl

Vikash K. Mansinghka
MIT

vkm@mit.edu

1 Introduction
Reifying random choices that probabilistic programs make
into traces has long been an important technique for both im-
plementors [13, 14, 20, 21] and theorists [2, 16] of PPLs. But
recently, many languages [1, 3, 4, 10, 17] have made traces a
user-facing concern, rather than an implementation detail:
users label each random sample in their programs with a
name, and traces are dictionaries recording the names and
values of all random choices encountered during program ex-
ecution. Traces are oftenmeant to be inspected, and explicitly
reasoned about; for example, when invoking inference algo-
rithms, users may have to ensure certain properties of the dis-
tributions over traces their programs encode, a task for which
several static analyses have been proposed [7–9, 18]. In de-
veloping these analyses, researchers have defined restricted
formal calculi for modeling aspects of modern, trace-based
languages. But these calculi are crafted specially to model
only the details that are relevant for a particular analysis,
and as such, feature restrictions that make them unsuitable
for “off-the-shelf” reuse when reasoning about new analyses
or program transformations. For the same reason, they also
fail to capture some interesting aspects of real-world PPLs.

This extended abstract presents aminimal language (Fig. 1)
modeling modern, trace-based PPLs, and a denotational se-
mantics that assigns to each program an s-finite measure
over a space of high-level traces (Fig. 2). It then demonstrates
how to use this formal calculus to define program transfor-
mations and prove them sound, using as examples weighted
sampling and density evaluation (Figs. 3 and 4). Finally, it
shows how to reason about higher-level inference algorithms
that compose these program transformations, via the exam-
ple of importance sampling with a custom proposal (Fig. 5).
We aim to: (1) give theorists a self-contained model of a typ-
ical trace-based PPL, (2) give PPL developers a blueprint for
formal reasoning about program semantics & new program
transformations, and (3) provide a common reference point
for discussion and comparison of many real-world PPLs.

2 Denotational Semantics
Our language is a simply-typed _-calculus (Fig. 1) extended
with minimal constructs for building traced probabilistic

LAFI 2023, January 2023, Boston, MA, USA
2023.

Ground types 𝜎 ::= 1 | B | R | Str | Trace | 𝜎1 × 𝜎2
Types 𝜏 ::=𝜎 | 𝜏1 → 𝜏2 | 𝜏1 × 𝜏2 | 𝐷 𝜎 | 𝑀 𝜏

Terms 𝑡 ::= () | 𝑐 | 𝑥 | _𝑥.𝑡 | 𝑡1 𝑡2 | { } | {𝑡1 ↦→ 𝑡2} |
sample(𝑡1, 𝑡2) | factor 𝑡 | return 𝑡 | do{𝑚}

Do-notation𝑚 ::= 𝑡 | 𝑥 ← 𝑡 ;𝑚

𝑡1 : Str 𝑡2 : 𝜎

{𝑡1 ↦→ 𝑡2} : Trace
𝑡 : 𝜏

return 𝑡 : 𝑀 𝜏

𝑡1 : 𝐷 𝜎 𝑡2 : Str

sample(𝑡1, 𝑡2) : 𝑀 𝜎

𝑡 : R

factor 𝑡 : 𝑀 1

𝑡 : 𝑀 𝜏

do{𝑡 } : 𝑀 𝜏

𝑡 : 𝑀 𝜏1 𝑥 : 𝜏1 ⊢ do{𝑚} : 𝑀 𝜏2

do{𝑥 ← 𝑡 ;𝑚} : 𝑀 𝜏2

Figure 1. Grammar and selected typing rules of our calculus.
The symbol 𝑐 ranges over constants of any type, including
ground types (e.g., false or 3.14), distribution types (e.g.,
primitives for Gaussian and Bernoulli distributions), and
function types (built-in operations, including projections 𝜋1,
𝜋2 for pairs, and if𝜏 : B → (1 → 𝜏) → (1 → 𝜏) → 𝜏). We
write let 𝑥 = 𝑡1 in 𝑡2 as sugar for (_𝑥.𝑡1) 𝑡2.
Semantics of types (quasi-Borel spaces) ⟦B⟧ := B ⟦1⟧ := 1
⟦𝐷 𝜎⟧ := M⟦𝜎⟧ ⟦𝑀 𝜏⟧ := M T × (T→ ⟦𝜏⟧) ⟦R⟧ := R ⟦Str⟧ := Str
⟦Trace⟧ := T ⟦𝜏1 × 𝜏2⟧ := ⟦𝜏1⟧ × ⟦𝜏2⟧ ⟦𝜏1 → 𝜏2⟧ := ⟦𝜏1⟧ → ⟦𝜏2⟧
Semantics of terms (quasi-Borel functions mapping environments to values)
⟦𝑐⟧(𝛾) := 𝑐 ⟦𝑥⟧(𝛾) := 𝛾 [𝑥] ⟦_𝑥.𝑡⟧(𝛾) := _𝑣.⟦𝑡⟧(𝛾 [𝑥 ↦→ 𝑣])
⟦𝑡1 𝑡2⟧(𝛾) := ⟦𝑡1⟧(𝛾) ⟦𝑡2⟧(𝛾) ⟦return 𝑡⟧(𝛾) := (𝛿{}, _𝑢.⟦𝑡⟧(𝛾))

⟦sample(𝑡1, 𝑡2)⟧(𝛾) := (
“

𝛿{⟦𝑡2⟧(𝛾) ↦→𝑥 }⟦𝑡1⟧(𝛾,𝑑𝑥), _𝑢.𝜋1 (pop𝑢 ⟦𝑡2⟧(𝛾)))

⟦factor 𝑡⟧(𝛾) := (𝑒⟦𝑡⟧(𝛾) ⊙ 𝛿{}, _𝑢.()) ⟦do{𝑡 }⟧(𝛾) := ⟦𝑡⟧(𝛾)
⟦do{𝑥 ← 𝑡 ;𝑚}⟧(𝛾) :=(„

(disj(𝑢, 𝑣) ⊙ 𝛿𝑢++𝑣) (𝜋1 ◦ ⟦do{𝑚}⟧) (𝛾 [𝑥 ↦→ 𝜋2 (⟦𝑡⟧(𝛾)) (𝑢)], 𝑑𝑣)

(𝜋1 ◦ ⟦𝑡⟧) (𝛾,𝑑𝑢),

_𝑢.𝜋2 (⟦do{𝑚}⟧(𝛾 [𝑥 ↦→ 𝜋2 (⟦𝑡⟧(𝛾)) (𝑢)])) (𝑢)
)

Figure 2. Our semantics, interpreting types as quasi-Borel
spaces and terms as quasi-Borel functions. Primitive distribu-
tions 𝐷 𝜎 are intrepreted as measures over the space denoted
by 𝜎 (M⟦𝜎⟧), whereas compound probabilistic programs
𝑀 𝜏 are interpreted as pairing a measure over traces (M T)
with a “value function” mapping traces to outputs (T→ 𝜏).

programs: sample(dist, name) for drawing a named sample
from a primitive distribution, and factor(𝑤) for factoring a
non-negative number𝑤 into the likelihood. Our semantics

1

LAFI 2023, January 2023, Boston, MA, USA Alexander K. Lew, Eli Sennesh, Jan-Willem van de Meent, and Vikash K. Mansinghka

(Fig. 2) interprets each type 𝜏 in the language as a quasi-Borel
space ⟦𝜏⟧ (an alternative to measurable spaces suitable for
higher-order PPL semantics [5]). We highlight several key
points, and refer the reader to Appendix B for full details:

• A novel contribution is a quasi-Borel space T of traces. Pre-
vious work has modeled traces as lists [16] or trees [13]
of reals, recording primitive uniform draws. But to model
the density calculations in many PPLs, traces must record
the heterogeneous values returned by diverse primitive dis-
tributions, e.g. Bernoulli booleans and Gaussian reals. Our
traces are dictionaries mapping string names to hetero-
geneous values of ground type. The syntax {} builds an
empty trace, {𝑡1 ↦→ 𝑡2} builds a trace mapping name 𝑡1 to
value 𝑡2, and concat 𝑡1 𝑡2 (which we abbreviate 𝑡1++𝑡2) con-
catenates two traces (or returns the empty trace if names
overlap). The primitive pop𝜎 𝑡1 𝑡2 looks up the name 𝑡2 in
the trace 𝑡1, and if it finds a value of type 𝜎 , returns it, and
a trace containing the remainder of the entries; otherwise,
it returns a default value of type 𝜎 , and the empty trace.
• The type𝑀 𝜏 of probabilistic programs is interpreted in the
quasi-Borel spaceM T × (T→ ⟦𝜏⟧): a program denotes
both a quasi-Borel measure over traces, and a function
from traces to return values. The probabilistic program
return 𝑡 that deterministically computes the term 𝑡 de-
notes a Dirac distribution over the empty trace {}, to-
gether with a function mapping the empty trace to ⟦𝑡⟧.
The program sample(𝑡1, 𝑡2) denotes a probability distri-
bution over singleton traces, and when programs are se-
quenced using do, their traces concatenate. Programs that
use a name twice denote the zero measure.

3 Program Transformations
PPLs typically automate core operations that form a compu-
tational interface to the measure a program denotes, by trans-
forming the program or interpreting it in a non-standard
way [19]. Figs. 3 and 4 show transformations implementing
the following simple interface, for a measure ` over traces:

• Density evaluation: given a trace 𝑢, evaluate 𝑑`

𝑑BTrace
(𝑢),

where BTrace is a base measure over T (Appendix C).
• Weighted sampling: sample a pair (𝑢,𝑤) of a trace and
weight s.t. E[𝑤 · 1𝐴 (𝑢)] = ` (𝐴) for measurable 𝐴 ⊆ T.

Similar transformations are well-known in the PPL commu-
nity, and can be validated using various proof techniques,
including via Ścibior et al. [16]’s framework for “inference
transformations,” or by modeling them with algebraic ef-
fects [11, 12, 15]. In Appendix C, we prove the following
correctness result using logical relations:

Proposition 3.1. Let (`, 𝑓) = ⟦𝑝⟧ for some ⊢ 𝑝 : 𝑀 𝜏 . Then:

• ⟦density{𝑝}⟧ is a density of ` with respect to BTrace, and
• V⟦wsamp{𝑝}⟧ (whereV(`, 𝑓) = 𝑓∗`) is a probability mea-
sure, and

”
(𝑤 ⊙ 𝛿𝑢) (V⟦wsamp{𝑝}⟧)(𝑑 (𝑢,𝑤)) = `.

Top-level wrapper (⊢ 𝑡 : 𝑀 𝜏 =⇒ ⊢ density{𝑡 } : Trace→ R)
density{𝑡 } := _�̂�.let (𝑤, 𝑣,𝑢′) = 𝜌 {𝑡 } (�̂�) in isempty(𝑢′) · 𝑤
Transforming types (identity on ground types 𝜎)
𝜌 {𝐷 𝜎 } := 𝜎 → R 𝜌 {𝑀 𝜏 } := Trace→ R × 𝜌 {𝜏 } × Trace
𝜌 {𝜏1 × 𝜏2} := 𝜌 {𝜏1} × 𝜌 {𝜏2} 𝜌 {𝜏1 → 𝜏2} := 𝜌 {𝜏1} → 𝜌 {𝜏2}
Transforming terms

𝜌 {𝑐 } := 𝑐𝜌 𝜌 {𝑥 } := 𝑥 𝜌 {_𝑥.𝑡 } := _𝑥.𝜌 {𝑡 }
𝜌 {sample(𝑡1, 𝑡2) } := _�̂�.let (𝑣, �̂�′) = pop𝜎 �̂� 𝑡2 in [when 𝑡1 : 𝐷 𝜎]

(has𝜎 �̂� 𝑡2 · 𝜌 {𝑡1} (𝑣), 𝑣, �̂�′)
𝜌 {factor 𝑡 } := _�̂�.(exp(𝑡), (), �̂�) 𝜌 {𝑡1 𝑡2} := 𝜌 {𝑡1} 𝜌 {𝑡2}
𝜌 {do{𝑡 }} := 𝜌 {𝑡 } 𝜌 {return 𝑡 } := _�̂�.(1, 𝜌 {𝑡 }, �̂�)
𝜌 {do{𝑥 ← 𝑡 ;𝑚}} := _�̂�.let (�̂�, 𝑥, �̂�′) = 𝜌 {𝑡 } (�̂�) in

let (𝑣, 𝑟, �̂�′′) = 𝜌 {do{𝑚}} (�̂�′) in
(�̂� · 𝑣, 𝑟, �̂�′′)

Figure 3. Trace density program transformation.

Top-level wrapper (⊢ 𝑡 : 𝑀 𝜏 =⇒ ⊢ wsamp{𝑡 } : 𝑀 (Trace × R))
wsamp{𝑡 } := do{ (𝑢, 𝑤, 𝑣) ← 𝜔 {𝑡 }; return (𝑢, 𝑤) }
Transforming types (identity on ground types 𝜎)
𝜔 {𝐷 𝜎 } := 𝐷 𝜎 𝜔 {𝑀 𝜏 } := 𝑀 (Trace × R × 𝜔 {𝜏 })
𝜔 {𝜏1 × 𝜏2} := 𝜔 {𝜏1} × 𝜔 {𝜏2} 𝜔 {𝜏1 → 𝜏2} := 𝜔 {𝜏1} → 𝜔 {𝜏2}
Transforming terms

𝜔 {𝑐 } := 𝑐𝜔 𝜔 {𝑥 } := 𝑥 𝜔 {_𝑥.𝑡 } := _𝑥.𝜔 {𝑡 }
𝜔 {𝑡1 𝑡2} := 𝜔 {𝑡1}𝜔 {𝑡2} 𝜔 {factor 𝑡 } := return({ }, exp(𝑡), ())
𝜔 {sample(𝑡1, 𝑡2) } := do{𝑥 ← sample(𝑡1, 𝑡2) ; return ({𝑡2 ↦→ 𝑥 }, 1, 𝑥) }
𝜔 {do{𝑡 }} := 𝜔 {𝑡 } 𝜔 {return 𝑡 } := return({ }, 1, 𝜔 {𝑡 })
𝜔 {do{𝑥 ← 𝑡 ;𝑚}} := do{ (𝑡, �̂�, 𝑥) ← 𝜔 {𝑡 }; (𝑠, 𝑣, �̂�) ← 𝜔 {do{𝑚}};

return (𝑡 ++ 𝑠, �̂� · 𝑣 · disj(𝑡, 𝑠), �̂�) }

Figure 4. Weighted trace sampler program transformation.

importance{𝑝, 𝑞} := do{(𝑡, �̂�) ← wsamp{𝑞};
let �̂�𝑞 = density{𝑞}(𝑡) in
let �̂�𝑝 = density{𝑝}(𝑡) in

return (𝑡, �̂� ·
�̂�𝑝

�̂�𝑞

)}

Figure 5. Importance sampling with a custom proposal

4 Sound Inference
Inference algorithms can be built using the operations pre-
sented in Sec. 3. For example, Fig. 5 implements an impor-
tance sampler targeting 𝑝 but using 𝑞’s sampler as a proposal:

Proposition 4.1. Let ⊢ 𝑝, 𝑞 : 𝑀𝜏 , let `𝑝 , `𝑞 be the measures
they denote, and let a beV⟦importance{𝑝, 𝑞}⟧, a probability
measure over T × R≥0. If `𝑞 ≠ 0 and `𝑝 ≪ `𝑞 , then 𝜋1∗a =

𝜋1∗ (V⟦wsamp{𝑞}⟧), and
”
(𝜋2 (𝑥) ⊙ 𝛿𝜋1 (𝑥))a (𝑑𝑥) = `𝑝 .

2

Semantics of Probabilistic Program Traces LAFI 2023, January 2023, Boston, MA, USA

5 Discussion
An interesting direction for future work, which we sketch in
Appendix E, is to understand today’s trace-based PPL land-
scape in terms of how each PPL extends Fig. 1’s language,
and what computational interface it exposes to the measures
denoted by programs. The choice of computational interface
affects both the modeling constructs the PPL can expose
(e.g., we could not expose a tractable density operation if our
language featured a normalize construct), and the express-
ible inference algorithms (e.g., HMC cannot be implemented
against Sec. 3’s interface, as it requires gradients).

References
[1] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer,

Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul
Horsfall, and Noah D Goodman. 2019. Pyro: Deep universal proba-
bilistic programming. The Journal of Machine Learning Research 20, 1
(2019), 973–978.

[2] Johannes Borgström, Ugo Dal Lago, Andrew D Gordon, and Marcin
Szymczak. 2016. A lambda-calculus foundation for universal proba-
bilistic programming. ACM SIGPLAN Notices 51, 9 (2016), 33–46.

[3] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and
Vikash K Mansinghka. 2019. Gen: a general-purpose probabilistic
programming system with programmable inference. In Proceedings of
the 40th acm sigplan conference on programming language design and
implementation. 221–236.

[4] HongGe, Kai Xu, and Zoubin Ghahramani. 2018. Turing: a language for
flexible probabilistic inference. In International conference on artificial
intelligence and statistics. PMLR, 1682–1690.

[5] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. 2017.
A convenient category for higher-order probability theory. In 2017
32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
IEEE, 1–12.

[6] Mathieu Huot, Sam Staton, and Matthijs Vákár. 2020. Correctness of
Automatic Differentiation via Diffeologies and Categorical Gluing.. In
FoSSaCS. 319–338.

[7] Wonyeol Lee, Xavier Rival, and Hongseok Yang. 2022. Smoothness
Analysis for Probabilistic Programs with Application to Optimised
Variational Inference. arXiv preprint arXiv:2208.10530 (2022).

[8] Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2019.
Towards verified stochastic variational inference for probabilistic pro-
grams. Proceedings of the ACM on Programming Languages 4, POPL
(2019), 1–33.

[9] Alexander K Lew, Marco F Cusumano-Towner, Benjamin Sherman,
Michael Carbin, and Vikash K Mansinghka. 2019. Trace types and
denotational semantics for sound programmable inference in proba-
bilistic languages. Proceedings of the ACM on Programming Languages
4, POPL (2019), 1–32.

[10] Vikash KMansinghka, Ulrich Schaechtle, ShivamHanda, Alexey Radul,
Yutian Chen, and Martin Rinard. 2018. Probabilistic programming
with programmable inference. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 603–
616.

[11] Dave Moore and Maria I Gorinova. 2018. Effect handling for
composable program transformations in edward2. arXiv preprint
arXiv:1811.06150 (2018).

[12] Minh Nguyen, Roly Perera, Meng Wang, and Nicolas Wu. 2022.
Modular Probabilistic Models via Algebraic Effects. arXiv preprint
arXiv:2203.04608 (2022).

[13] Hugo Paquet and Sam Staton. 2021. LazyPPL: laziness and types in
non-parametric probabilistic programs. In Advances in Programming

Languages and Neurosymbolic Systems Workshop.
[14] Adam Ścibior, Zoubin Ghahramani, and Andrew D Gordon. 2015. Prac-

tical probabilistic programming with monads. In Proceedings of the
2015 ACM SIGPLAN Symposium on Haskell. 165–176.

[15] Adam Scibior and Ohad Kammar. 2015. Effects in Bayesian inference.
In Workshop on Higher-Order Programming with Effects (HOPE).

[16] Adam Ścibior, Ohad Kammar, Matthijs Vákár, Sam Staton, Hongseok
Yang, Yufei Cai, Klaus Ostermann, Sean K Moss, Chris Heunen, and
Zoubin Ghahramani. 2017. Denotational validation of higher-order
Bayesian inference. arXiv preprint arXiv:1711.03219 (2017).

[17] Sam Stites, Heiko Zimmermann, HaoWu, Eli Sennesh, and Jan-Willem
van de Meent. 2021. Learning proposals for probabilistic programs
with inference combinators. In Uncertainty in Artificial Intelligence.
PMLR, 1056–1066.

[18] Di Wang, Jan Hoffmann, and Thomas Reps. 2021. Sound probabilistic
inference via guide types. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation. 788–803.

[19] David Wingate, Noah Goodman, Andreas Stuhlmüller, and Jeffrey
Siskind. 2011. Nonstandard interpretations of probabilistic programs
for efficient inference. Advances in neural information processing sys-
tems 24 (2011).

[20] DavidWingate, Andreas Stuhlmüller, and Noah Goodman. 2011. Light-
weight implementations of probabilistic programming languages via
transformational compilation. In Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Statistics. JMLR Work-
shop and Conference Proceedings, 770–778.

[21] Lingfeng Yang, Patrick Hanrahan, and Noah Goodman. 2014. Generat-
ing efficient MCMC kernels from probabilistic programs. In Artificial
Intelligence and Statistics. PMLR, 1068–1076.

3

LAFI 2023, January 2023, Boston, MA, USA Alexander K. Lew, Eli Sennesh, Jan-Willem van de Meent, and Vikash K. Mansinghka

Appendix
A Background and Notation
Quasi-Borel Spaces.We carry out our development in the category of quasi-Borel spaces [5], an alternative to measurable
spaces which we review briefly here.

Definition A.1 (quasi-Borel space). A quasi-Borel space 𝑋 is a tuple (|𝑋 |, 𝑀𝑋) of a carrier set |𝑋 | and a set𝑀𝑋 ⊆ [R→ |𝑋 |]
of admissible random elements, satisfying:
• (Closure under measurable precomposition.) If 𝜙 ∈ 𝑀𝑋 and 𝑓 : R→ R is measurable, 𝜙 ◦ 𝑓 ∈ 𝑀𝑋 .
• (Constant maps.) If 𝜙 = _𝑟 .𝑥 for some 𝑥 ∈ |𝑋 |, then 𝜙 ∈ 𝑀𝑋 .
• (Closure under piecewise gluing.) If {𝐴𝑖 }𝑖∈N is a countable partition of R and there exist 𝜙𝑖 ∈ 𝑀𝑋 such that 𝜙 (𝑟) = 𝜙𝑖 (𝑟)
whenever 𝑟 ∈ 𝐴𝑖 , then 𝜙 ∈ 𝑀𝑋 .

Definition A.2 (quasi-Borel function). If 𝑋 and 𝑌 are quasi-Borel spaces, a quasi-Borel function 𝑓 : 𝑋 → 𝑌 is a function from
|𝑋 | to |𝑌 | satisfying the property that for all 𝜙 ∈ 𝑀𝑋 , 𝑓 ◦ 𝜙 ∈ 𝑀𝑌 .

Example A.3 (Standard Borel Spaces). Any standard Borel space (measurable space that is either finite, countable, or
measurably isomorphic to R) is also a quasi-Borel space, by choosing𝑀𝑋 to be the measurable functions from R to 𝑋 . The
quasi-Borel functions between standard Borel spaces are exactly the measurable functions between them as measurable spaces.

Definition A.4 (quasi-Borel measure). Let 𝑋 be a quasi-Borel space. A quasi-Borel measure on 𝑋 is an equivalence class of
(`, 𝛼) pairs, where ` is a (measure-theoretic) measure on R, and 𝛼 ∈ 𝑀𝑋 . Two pairs (`1, 𝛼1) and (`2, 𝛼2) are equivalent if for
all quasi-Borel 𝑓 : 𝑋 → R≥0,

´
𝑓 (𝛼1 (𝑥))`1 (𝑑𝑥) =

´
𝑓 (𝛼2 (𝑥))`2 (𝑑𝑥).

Proposition A.5. There is a strong commutative monadM in QBS, taking 𝑋 to the spaceM 𝑋 of measures on 𝑋 .

Notation. Following Ścibior et al. [16], we use synthetic measure theory notation to concisely write down quasi-Borel measures:
• For 𝑥 ∈ |𝑋 |, we write 𝛿𝑥 for the Dirac delta distribution at 𝑥 . (We can represent it as a quasi-Borel measure by taking
` = 𝑈 (0, 1) and 𝛼 = _𝑟 .𝑥 .)
• For ` ∈ |M 𝑋 |, and𝑤 : 𝑋 → R≥0, we write𝑤 ⊙ ` for the measure with density𝑤 with respect to `. For𝑤 ∈ R≥0, we abuse
notation and write𝑤 ⊙ ` instead of (_𝑥 .𝑤) ⊙ `.
• For 𝑓 : 𝑋 → R≥0 and 𝑝 = [(`, 𝛼)] ∈ |M 𝑋 |, we write

´
𝑋
𝑓 (𝑥)𝑝 (𝑑𝑥) for the integral

´
𝑓 (𝛼 (𝑟))` (𝑑𝑟).

• If 𝑘 : 𝑋 →M 𝑌 , then we write 𝑘 (𝑥, 𝑑𝑦) in integral expressions, rather than 𝑘 (𝑥) (𝑑𝑦).
• For 𝑘 : 𝑋 → M 𝑌 , we write

›
𝑋
𝑘 (𝑥)𝑝 (𝑑𝑥) for the measure over 𝑌 that integrates a function 𝑔 : 𝑌 → R≥0 by computing˜

𝑔(𝑦)𝑝 (𝑑𝑥)𝑘 (𝑥, 𝑑𝑦).
• For 𝑓 : 𝑋 → 𝑌 , and ` :M 𝑋 , 𝑓∗` :M 𝑌 is the pushforward of ` by 𝑓 , integrating a function 𝑔 : 𝑌 → R≥0 by integrating
𝑔 ◦ 𝑓 under `.

B Core Calculus Syntax and Semantics: Details
Language syntax: types. Our language (Fig. 1) has as ground types 1 (the singleton type), the Booleans B, the reals R,
the strings Str, tuples 𝜎1 × 𝜎2 of other ground types, and a new type of traces, which we discuss below. In addition, the
language features function types 𝜏1 → 𝜏2, types 𝐷 𝜎 of primitive distributions over each ground type 𝜎 , and monadic types
𝑀 𝜏 representing “traced probabilistic computations returning 𝜏 .”

Language syntax: terms. Our language’s terms include constants 𝑐 of various types (e.g., false is a Boolean constant, 3.14
is a real-valued constant, normal is a constant of type R × R → 𝐷 R, and + is a constant of type R × R → R), variables 𝑥 ,
function terms _𝑥 .𝑡 , and function application expressions 𝑡1 𝑡2 (where 𝑡1 has function type, and 𝑡2 is its argument). We also
include syntax for constructing empty ({}) and singleton ({name ↦→ value}) traces, and a standard let expression for defining
local variables. For probabilistic programming, return 𝑡 constructs a deterministic probabilistic program of type 𝑀 𝜏 that
just computes a value of type 𝜏 ; sample(𝑡1, 𝑡2) is the program that samples from distribution 𝑡1 at name 𝑡2; factor(𝑡) factors a
non-negative real weight into the likelihood, creating a possibly unnormalized probabilistic program; and do{𝑥 ← 𝑡1;𝑚} is
used to build larger probabilistic computations, that first run a computation 𝑡1, assigning 𝑥 to the result, then run the remainder
of the computation𝑚. (Our syntax is inspired by Haskell’s do-notation for sequencing monadic computations.)

Semantics of types. Our semantics (Fig. 2) interprets each type 𝜏 as a quasi-Borel space ⟦𝜏⟧. Our ground types are all
interpreted as standard Borel spaces, measurable spaces that are either finite, countable, or isomorphic to R, and as such
extend canonically to quasi-Borel spaces: ⟦R⟧ = (R,B(R)), ⟦Str⟧ = (Str,P(Str)), ⟦B⟧ = ({True, False},P({True, False})),

4

Semantics of Probabilistic Program Traces LAFI 2023, January 2023, Boston, MA, USA

⟦1⟧ = ({()},P({()})), and ⟦𝜎1 × 𝜎2⟧ = ⟦𝜎1⟧ × ⟦𝜎2⟧. For the ground type Trace, we define a new standard Borel space, T—see
below. Our semantics interprets function types as quasi-Borel function spaces (just as in Ścibior et al. [16]), and for the types
𝐷 𝜎 of distributions over ground types, we have ⟦𝐷 𝜎⟧ =M⟦𝜎⟧, the quasi-Borel space of measures over ⟦𝜎⟧. Because ⟦𝜎⟧ is
always standard Borel, these are just the ordinary (measure-theoretic) measures over ⟦𝜎⟧.

Importantly, our semantics interprets monadic probabilistic programs𝑀 𝜏 , not as (directly) denoting quasi-Borel measures
over ⟦𝜏⟧, but rather as denoting pairs containing a quasi-Borel measure over traces, and a T → ⟦𝜏⟧ function mapping
traces to return values. If 𝑡 is a term of type 𝑀 𝜏 , we write V⟦𝑡⟧ for the marginal measure over 𝜏 that “forgets the trace,”
V⟦𝑡⟧ = 𝜋2 (⟦𝑡⟧)∗ (𝜋1 (⟦𝑡⟧)). However, a key thesis of this work is that it is useful to keep around the specific distribution
over traces implemented by the user’s program, and not treat all programs with equivalent marginal output distributions as
equivalent.

QBS T of traces.We define a measurable space of traces that is standard Borel, and thus is also a quasi-Borel space. First, we
define a set S of trace shapes, lexicographically sorted lists of (𝑘, 𝜎) pairs, where 𝑘 ∈ Str is a string-valued name, 𝜎 is a ground
type, and no name appears more than once in the list. Then, for 𝑖 ≥ 0, we define T𝑖 = {(𝑠, 𝑣) | 𝑠 ∈ S∧𝑣 ∈

>
(𝑘,𝜎) ∈𝑠⟦𝜎⟧𝑖 }, where

⟦·⟧𝑖 is an inductively defined family of (SBS-valued) semantic functions: we have ⟦R⟧𝑖 = (R,B(R)), ⟦Str⟧𝑖 = (Str,P(Str)),
⟦B⟧𝑖 = ({True, False},P({True, False})), ⟦1⟧𝑖 = ({()},P({()})), ⟦𝜎1 × 𝜎2⟧𝑖 = ⟦𝜎1⟧𝑖 × ⟦𝜎2⟧𝑖 , ⟦Trace⟧0 = ∅ (the empty
set, with the 𝜎-algebra {∅}), and ⟦Trace⟧𝑖 = T𝑖−1, with the 𝜎-algebra that makes 𝑈 ⊆ T𝑖−1 measurable if for each 𝑠 ∈ S,
{𝑣 | (𝑠, 𝑣) ∈ 𝑈 } is measurable under the product 𝜎-algebra for

>
𝑘,𝜎∈𝑠⟦𝜎⟧𝑖−1. We then set T = ∪𝑖∈NT𝑖 , with the 𝜎-algebra that

makes𝑈 ⊆ T measurable if for each 𝑖 ∈ N, {𝑢 ∈ 𝑈 | 𝑢 ∈ T𝑖 ∧ ∀𝑗 < 𝑖, 𝑢 ∉ T𝑗 } is measurable as a subset of T𝑖 .1
We expose several primitive functions for dealing with traces:

• has𝜎 : Trace→ Str→ R: returns 1 if the given trace has a value of type 𝜎 at the given name, 0 otherwise.
• pop𝜎 : Trace → Str → 𝜎 × Trace: if the given trace has a value of type 𝜎 at the given name, return it, along with a
modified trace that deletes that entry. Otherwise, return a default value of type 𝜎 (0 for R, false for B, "" for Str, {} for
Trace, () for 1, and pairs of default values for tuples), and an empty trace.

The names has𝜎 and pop𝜎 are syntax in our language; we write 𝑐 to refer to the quasi-Borel functions they denote.

Semantics of terms. Fig. 2 also defines the semantics function ⟦·⟧ on terms. Technically, the domain of the ⟦·⟧ function is
typed terms-in-context of the form Γ ⊢ 𝑡 : 𝜏 , where Γ is a list of 𝑥𝑖 : 𝜏𝑖 entries for each free variable in 𝑡 , 𝑡 is a well-formed term
in context Γ, and 𝜏 is the type of 𝑡 in context Γ. However, for brevity we omit Γ and 𝜏 , writing ⟦𝑡⟧. The denotation of a term in
context is a quasi-Borel function, from environments 𝛾 assigning values to each free variable in Γ, to values in ⟦𝜏⟧.
For the deterministic portion of our language, our semantics is standard. The interesting cases are for terms of type𝑀 𝜏 ,

which have as denotations pairs of a measure over traces, and a value function mapping a trace to the expression’s value under
that trace. The terms of type𝑀 𝜏 are:

• return 𝑡 , which denotes a Dirac distribution over empty traces (because it makes no random choices), together with the
value function that ignores the input trace and just returns ⟦𝑡⟧(𝛾) (the value of 𝑡 in the current environment 𝛾).
• sample(𝑡1, 𝑡2), which denotes the marginal distribution arising by sampling 𝑥 ∼ ⟦𝑡1⟧(𝛾) (recall that 𝑡1 : 𝐷 𝜎 denotes a
primitive distribution), and returning the trace {⟦𝑡2⟧(𝛾) ↦→ 𝑥}. The return value function takes a trace 𝑢, and uses pop

𝜎

to look up the name ⟦𝑡2⟧(𝛾) in the trace, and return the value found there.
• factor 𝑡 factors the exponent of a given log weight into the density. As such, its measure over traces is the dirac measure
over {}, scaled by 𝑒⟦𝑡⟧(𝛾) . Its return value function trivially returns (), the empty tuple of type 1.
• do{𝑥 ← 𝑡 ;𝑚} sequences two probabilistic computations. The measure over traces that it denotes first generates
a trace 𝑢1 ∼ 𝜋1 (⟦𝑡⟧(𝛾)), computes the return value 𝑣 = 𝜋2 (⟦𝑡⟧(𝛾)) (𝑢), then generates the rest of the trace 𝑢2 ∼
𝜋1 (⟦do{𝑚}⟧(𝛾 [𝑥 ↦→ 𝑣)). If 𝑢1 and 𝑢2 do not have disjoint sets of trace names (which is checked by the disj primitive),
the zero measure is returned, indicating error. Otherwise, the concatenation 𝑢1 ++ 𝑢2 is returned. The value function
passes a given trace into ⟦𝑡⟧(𝛾)’s return value function to get 𝑣 , then into ⟦do{𝑚}⟧(𝛾 [𝑥 ↦→ 𝑣])’s return value function
to get a final return value.

C Computational Interface: Details
Reasoning about the density transformation. First, in order to talk rigorously about densities, we need to define the
reference measures with respect to which densities are computed:

1This inductive definition is designed to allow traces to contain other traces, which is one way of modeling hierarchical addresses like those used in Gen [3]. If
only simple ground types (strings, reals, Booleans) were allowed, the inductive definition would not be required, and we could simply set T = T0.

5

LAFI 2023, January 2023, Boston, MA, USA Alexander K. Lew, Eli Sennesh, Jan-Willem van de Meent, and Vikash K. Mansinghka

Definition C.1. For each ground type in our language, we assign a base measure B𝜎 : for the reals we choose the Lebesgue
measure, for 1, Str, and B, we choose the counting measure, and for 𝜎1×𝜎2, we choose the product of B𝜎1 and B𝜎2 . For Trace, we
first define base measures for the sets T𝑖 considered in the previous section: in particular, we choose the measure that assigns
to a subset 𝐴 ⊆ T𝑖 the measure

∑
𝑠∈S (

>
(𝑘,𝜎) ∈𝑠 B𝜎) ({𝑣 | (𝑠, 𝑣) ∈ 𝐴}), where BTrace is interpreted as the base measure for T𝑖−1.

Then, for the base measure over the space of all traces, for𝐴 ⊆ T, we set BTrace (𝐴) =
∑∞

𝑖=0 BT𝑖 ({𝑡 ∈ 𝐴 | 𝑡 ∈ T𝑖 ∧∀𝑗 < 𝑖, 𝑡 ∉ T𝑗 }).

Now, we can establish the correctness of the density program transformation given in Fig. 3. The main translation it-
self is one line: it translates a term ⊢ 𝑡 : 𝑀 𝜏 into a term ⊢ density{𝑡} : Trace → R. But the top-level translation relies
crucially on a “macro” 𝜌 , that compositionally rewrites the program according to the rules in Fig. 3. The macro 𝜌 operates
on terms, but Fig. 3 also defines it on types; the invariant is that given a term of type 𝜏 , 𝜌 will translate it into a term of type 𝜌{𝜏}.

Logical relations for correctness of the density macro.What is the goal of this macro? We first clearly define a specification
for 𝜌 . For each type 𝜏 , we define a relation on ⟦𝜏⟧ × ⟦𝜌{𝜏}⟧, which is meant to capture what it would mean for 𝜌 to be doing
its job correctly: if 𝑠 : 𝜌{𝜏} is a correct translation of 𝑡 : 𝜏 , then (⟦𝑡⟧, ⟦𝑠⟧) should be related. The relation is defined as follows:
• For ground types 𝜎 , R𝜎 := {(𝑥, 𝑥) | 𝑥 ∈ ⟦𝜎⟧}. This reflects that the translation 𝜌 does nothing to terms of ground type—a
value is a ‘correct translation’ of another value only if the two values are exactly equal.
• For distribution types 𝐷 𝜎 , R𝐷 𝜎 := {(𝑑, 𝑝) | 𝑝 ⊙ B𝜎 = 𝑑}. In other words, a distribution 𝑑 ∈ ⟦𝐷 𝜎⟧ is related to a function
𝑝 ∈ ⟦𝜌{𝐷 𝜎}⟧ = ⟦𝜎 → R⟧ if 𝑝 is a correct density of 𝑑 .
• For probabilistic program types 𝑀 𝜏 , R𝑀 𝜏 := {((`, 𝑓), 𝑝) | (isempty ◦ 𝜋3 ◦ 𝑝) ⊙ ((𝜋1 ◦ 𝑝) ⊙ BTrace) = ` ∧ (𝑓 , 𝜋2 ◦ 𝑝) ∈
R𝜏 ∧ ∀𝑢 ∈ {𝑢 ∈ T | 𝜋3 (𝑝 (𝑢)) = {}},∀𝑡 ∈ {𝑡 ∈ T | disj(𝑢, 𝑡)}, 𝜋3 (𝑝 (𝑢 ++ 𝑡)) = 𝑡}. Unpacking this, we see that it is a relation
between the denotations of probabilistic programs (containing a measure ` over traces and a function 𝑓 that computes 𝜏
values based on traces) and their translations under 𝜌 , into functions 𝑝 : T→ R × ⟦𝜌{𝜏}⟧ × T. It places three requirements
on the translation 𝑝:
1. (isempty ◦ 𝜋3 ◦ 𝑝) ⊙ ((𝜋1 ◦ 𝑝) ⊙ BTrace) = `, which says that the function _𝑢.isempty(𝜋3 (𝑝 (𝑢))) · 𝜋1 (𝑝 (𝑢)) is a density of

` with respect to the base measure. Given a trace 𝑢, this density function runs 𝑝 (𝑢), extracts the first component (a real
number), and multiplies it by 1 if the third return value from 𝑝 is empty, or 0 otherwise. The idea is that 𝑝’s last (third)
return value is supposed to report any “unused” part of the input trace, and if this is non-empty, it means the input trace
was “too big” to be part of `’s support. Therefore, the input trace has density 0.

2. (𝑓 , 𝜋2 ◦ 𝑝) ∈ R𝜏 . This says that looking at just the second return value of 𝑝 should basically implement the return-value
function 𝑓 . However, instead of saying that 𝑓 = 𝜋2 ◦ 𝑝 , we just require that 𝑓 and 𝜋2 ◦ 𝑝 are related, i.e., that 𝜋2 ◦ 𝑝 is a
correct translation of 𝑓 . In the case where the value type 𝜏 is a ground type, “related” means “exactly equal.” But if the
original program was of type, e.g.,𝑀 (𝐷 𝜎) (a probabilistic program returning a primitive distribution), then the output
type after translation is no longer 𝐷 𝜎 but rather 𝜎 → R (density functions of the primitive distribution). Because of this,
𝑓 will map traces to 𝐷 𝜎 values, whereas 𝜋2 ◦ 𝑝 will map traces to the densities of those primitive distributions.

3. ∀𝑢 ∈ {𝑢 ∈ T | 𝜋3 (𝑝 (𝑢)) = {}},∀𝑡 ∈ {𝑡 ∈ T | disj(𝑢, 𝑡)}, 𝜋3 (𝑝 (𝑢 ++ 𝑡)) = 𝑡 . This requirement states that the third return
value from 𝑝 returns the “unconsumed” part of the input trace. More precisely, for any trace 𝑢 on which 𝑝 returns an
empty “unconsumed” trace, if we extend 𝑢 with extra choices 𝑡 , we expect 𝑝’s third return value to just be 𝑡 .

• For product types 𝜏1 × 𝜏2, R𝜏1×𝜏2 := {((𝑥,𝑦), (𝑥𝜌 , 𝑦𝜌)) | (𝑥, 𝑥𝜌) ∈ R𝜏1 ∧ (𝑦,𝑦𝜌) ∈ R𝜏2 }.
• For function types 𝜏1 → 𝜏2, R𝜏1→𝜏2 := {(𝑓 , 𝑓𝜌) | ∀(𝑥, 𝑥𝜌) ∈ R𝜏1 , (𝑓 (𝑥), 𝑓𝜌 (𝑥𝜌)) ∈ R𝜏2 }.
For an environment Γ = (𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛), we define RΓ to be R𝜏1×···×𝜏𝑛 .
We now show what is often called the fundamental lemma of a logical relations argument:

Lemma C.2. For every term Γ ⊢ 𝑡 : 𝜏 in our language, and every environment (𝛾,𝛾𝜌) ∈ RΓ , (⟦Γ ⊢ 𝑡 : 𝜏⟧(𝛾), ⟦𝜌{Γ} ⊢ 𝜌{𝑡} :
𝜌{𝜏}⟧(𝛾𝜌)) ∈ R𝜏 .

Proof sketch. We proceed by induction on the language’s syntax:
• For constants 𝑐 : 𝜏 , we assume given constants 𝑐𝜌 : 𝜌{𝜏} satisfying (𝑐, 𝑐𝜌) ∈ R𝜏 . In particular, this means that primitive
distributions, such as flip : 𝐷 B must come equipped with densities, such as flip𝜌 : B→ R (which would be _𝑏.0.5 in the
case of a fair coin).
• For variables 𝑥 : 𝜏 , we appeal to the hypothesis that the environments (𝛾,𝛾𝜌) satisfy the relation.
• For sample(𝑡1, 𝑡2), we first apply the inductive hypothesis to establish that ⟦𝜌{𝑡1}⟧(𝛾𝜌) is a correct density function for the
primitive distribution ⟦𝑡1⟧(𝛾). Then we can see that all three correctness criteria for translations of𝑀 𝜏 terms are satisfied:
1. 𝜋1 (⟦sample(𝑡1, 𝑡2)⟧(𝛾)) is supported only on one possible trace shape, the shape 𝑠 = [(⟦𝑡2⟧(𝛾), 𝜎)], where 𝜎 is the type

over which the primitive distribution ⟦𝑡1⟧(𝛾) is defined. Therefore, the density of a trace (𝑠′, 𝑣) is 0 if 𝑠′ ≠ 𝑠 , and otherwise,
6

Semantics of Probabilistic Program Traces LAFI 2023, January 2023, Boston, MA, USA

it is the density of 𝑣 under ⟦𝑡1⟧(𝛾), with respect to B𝜎 . Our translation outputs a density that is zero if ⟦𝑡2⟧(𝛾) does not
appear in the input trace, and otherwise outputs the correct density of the value stored there with respect to B𝜎 , using
𝜌{𝑡1}. If the trace contains extra entries, then the third return value from our translation will be a non-empty trace, and so
we will still satisfy the requirement that _𝑢.isempty(𝜋3 (𝑝 (𝑢))) · 𝜋1 (𝑝 (𝑢)) is a correct trace density (it will be zero when
the third return value is non-empty).

2. As required, the second output of our translation applies the return-value function from the semantics of sample to
produce the value returned by sample on a particular trace (the result of pop𝜎).

3. By the definition of pop𝜎 , we have that when the given trace does contain the name ⟦𝑡2⟧(𝛾), the third return value of our
translation will be the remainder of the trace.

• For factor, the third return value is the input trace, so the only trace to which we assign any mass is the empty trace (which
accords with the semantics of factor). On that trace, our density is equal to 𝑒⟦𝑡⟧(𝛾) , which matches the semantics.
• For do{𝑥 ← 𝑡 ;𝑚}, we appeal to the inductive hypothesis for the correctnes sof 𝜌{𝑡} and 𝜌{do{𝑚}}, and to the product rule
for densities of joint distributions.
• The argument for _𝑥.𝑡 and 𝑡1 𝑡2 (forming functions and applying them) is standard, and follows from the way we’ve defined
R𝜏1→𝜏2 . See, e.g., Huot et al. [6].

□

Having proven the fundamental lemma, the full correctness result is straight-forward.
Proposition C.3. For ⊢ 𝑝 : 𝑀 𝜏 , ⟦density{𝑝}⟧ is a density of 𝜋1 (⟦𝑝⟧) with respect to BTrace.

Proof. By the fundamental lemma, (⟦𝑝⟧, ⟦𝜌{𝑝}⟧) ∈ R𝑀 𝜏 , which implies that _𝑢.isempty(𝜋3 (⟦𝜌{𝑝}⟧(𝑢))) · 𝜋1 (⟦𝜌{𝑝}⟧(𝑢)) is
a correct trace density of 𝜋1 (⟦𝑝⟧). This function is precisely what ⟦density{𝑝}⟧ computes. □

Weighted sampler. A similar argument applies to the weighted sampler program transformation, where our logical
relations are now defined over ⟦𝜏⟧ × ⟦𝜔{𝜏}⟧. These relations are:
• For ground types 𝜎 , R𝜎 = {(𝑥, 𝑥) | 𝑥 ∈ ⟦𝜎⟧}.
• For distributions 𝐷 𝜎 , R𝜎 = {(𝑥, 𝑥) | 𝑥 ∈ ⟦𝐷 𝜎⟧}, i.e., the transformation leaves primitive distributions unchanged.
• For products and functions, the same inductive definitions as in the logical relations for 𝜌 .
• For probabilistic program types 𝑀 𝜏 , R𝑀 𝜏 = {((`, 𝑓), (a, 𝑔)) | a a probability measure ∧ (𝑓 , 𝜋3 ◦ 𝑔) ∈ R𝜏 ∧

”
𝑤 ⊙

𝛿𝑢 (⟨𝜋1, 𝜋2⟩)∗V(a, 𝑔) (𝑑 (𝑢,𝑤)) = `}. This says that the translation of a probabilistic program is another probabilistic
program that is normalized (denotes a probability measure, not an unnormalized measure), has the same return-value-
function over traces, and – when the returned weight is factored in – denotes the same measure over traces.

An analogous fundamental lemma can be proven for this logical relation, and then the correctness of wsamp follows.
Together with the proposition above, this establishes Prop. 3.1.

D Sound Inference: Details
Unfolding the semantics of do, let, and return, we get thatV⟦importance{𝑝, 𝑞}⟧ is equal to„

𝛿 (𝑡,�̂� · ⟦density{𝑝}⟧(𝑡)⟦density{𝑞}⟧(𝑡))
V⟦wsamp{𝑞}⟧(𝑑 (𝑡, �̂�)).

Using the correctness proof for densities, this can be rewritten to„
𝛿 (𝑡,�̂� · 𝑑 (𝜋1◦⟦𝑝⟧)

𝑑 (𝜋1◦⟦𝑞⟧)
(𝑡))V⟦wsamp{𝑞}⟧(𝑑 (𝑡, �̂�)) .

The pushforward of this measure by 𝜋1 simply returns the sampled 𝑡 unchanged, and so is clearly equal to the pushforward
ofV⟦wsamp{𝑞}⟧ by 𝜋1. Furthermore, letting a = V⟦importance{𝑝, 𝑞}⟧, we have

„
𝜋2 (𝑥) ⊙ 𝛿𝜋1 (𝑥)a (𝑑𝑥) =

„
(�̂� · 𝑑 (𝜋1 ◦ ⟦𝑝⟧)

𝑑 (𝜋1 ◦ ⟦𝑞⟧)
(𝑡) ⊙ 𝛿𝑡V⟦wsamp{𝑞}⟧(𝑑 (𝑡, �̂�))

=

“
𝑑 (𝜋1 ◦ ⟦𝑝⟧)
𝑑 (𝜋1 ◦ ⟦𝑞⟧)

(𝑡) ⊙ 𝛿𝑡 (𝜋1 ◦ ⟦𝑞⟧)(𝑑𝑡)

=

“
𝛿𝑡 (𝜋1 ◦ ⟦𝑝⟧)(𝑑𝑡)

= 𝜋1 ◦ ⟦𝑝⟧,
7

LAFI 2023, January 2023, Boston, MA, USA Alexander K. Lew, Eli Sennesh, Jan-Willem van de Meent, and Vikash K. Mansinghka

as desired. The second line uses the correctness result for wsamp, and the third uses the definition of the Radon-Nikodym
derivative.

E The Traced PPL Landscape
One thesis of this abstract is that a useful lens through which to view the landscape of existing PPLs is to ask the following
questions:
• What core operations, like density and wsamp, do the languages implement?
• How does the choice of core operations affect what constructs the language can expose?
• How does the choice of core operations affect the inference algorithms that can be automated using those core operations?

A full study of these questions for different languages is left to future work, but we make some observations here, pointing
to directions that may be interesting to explore further:
• In the Gen PPL [3], there is no factor statement, and all programs encode probability measures over traces. Instead of
wsamp, Gen programs support exact (unweighted) simulation.
• In ProbTorch [17], there is a core operation that partially constrains the execution of a probabilistic program using the
trace of another program, but (unlike our density operation) allows the trace to be incomplete or to contain extraneous
variables not sampled by the program. It is still unclear to us how exactly to state the general specification and correctness
theorem for this operation, in terms of the measure over traces denoted by the program. Gen features a similar but more
restricted operation, called generate, which, given a partial trace as input, returns a properly weighted sample for the
posterior over complete traces, conditioning on the partial trace. (This is more restricted than ProbTorch, in that Gen
does not permit the partial trace to contain extraneous or auxiliary variables that are not present in the model.)
• The Pyro [1] and Gen [3] languages contain control flow combinators, like plate in Pyro or Map in Gen, that are
semantically equivalent to particular loops or recursions, but are translated specially by the PPL’s automated operations,
to yield more efficient implementations of densities, gradient estimators, or other operations.

8

	1 Introduction
	2 Denotational Semantics
	3 Program Transformations
	4 Sound Inference
	5 Discussion
	References
	A Background and Notation
	B Core Calculus Syntax and Semantics: Details
	C Computational Interface: Details
	D Sound Inference: Details
	E The Traced PPL Landscape

