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Many probabilistic programming languages (PPLs) allow users to define custom proposals as programs. This

requires conditionally evaluating a sampled proposal trace in the target program. Unfortunately, formulations

of probability theory based onMarkov categories as yet have nomodel of traces. This abstract introduces tracing

and traced importance sampling in the higher-order Markov category QBS, building a Kleisli subcategory

whose morphisms model traced sampling with unnormalized densities.

1 INTRODUCTION
Probabilistic programming languages (PPLs) provide language-level support for probabilistic mod-

eling and inference [18]. Unfortunately, since no inference algorithm works well for all models,

PPLs increasingly also provide metaprogramming constructs for inference [11]; these can include

writing one probabilistic program as a generative model and another (often with parameters tuned

by optimization) as an inference proposal [1, 2, 8, 12, 15]. Operationally, probabilistic programmers

know what it means to use one program as a proposal for another, but denotational semantics for

this operation has typically considered explicitly typed traces [10].

This abstract builds on the category QBS for higher-order probability theory [6], borrowing

a useful sample space from Dash et al. [3]. Section 2 builds a model of tracing in QBS. Section 3

exploits tracing to convert expectations taken with respect to a proposal probability kernel into

expectations with respect to a target kernel. Section 4 summarizes and discusses future work.

Appendix A reviews preliminaries on QBS, and its resulting category of probability kernels Q
provides our general setting. Appendix B develops the abstract’s model of tracing measure kernels.

Appendix C develops a change-of-measure theorem for tracing measure kernels.

2 EAGER AND LAZY TRACING IN PROBABILISTIC PROGRAMMING
A program in a PPL commonly writes out, as a side-effect, a trace containing the names and values

of random variables sampled during execution. This requires a countably infinite set A of addresses,
such as strings in Python-based PPLs [1, 12] or symbols in Lisp-based PPLs [5, 17, 19]. Internally,

probabilistic program evaluation also reads from a stream of random numbers, converting them

into meaningful samples from a distribution. This section formalizes randomness sinks and sources

as mappings from hierarchical addresses A∗
to random variates, within the ambient category Q of

probability kernels. We refer to the typical traces found in PPLs as “eager” traces.

Eager traces map addresses to a pair of a random element of the unit interval, and an element of

a support s ∈ S with corresponding QBS ⟦s⟧ ∈ 𝑂𝑏 (QBS). Work such as Lew et al. [10] has specified

such support types, and we give one such definition below.

Definition 2.1 (Support types). Support types s ∈ S are drawn from the following grammar

S := 𝐼 | N | Z | R | R+
0
| [0, 1] | [1..𝑛] : 𝑛 ∈ N.

Definition 2.2 (Eager traces). An eager trace is a deterministic partial function 𝜏 : A∗ ⇀𝑛 [0, 1] ×∐
s∈S⟦s⟧ mapping 𝑛 ∈ N addresses into a product of unit interval with the pair of a support type

and an element of its corresponding space. Eager traces have type T ∈ 𝑂𝑏 (Q).
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Eager traces are deterministic partial mappings, because once a random variable has been

sampled, its value cannot change. In contrast, lazy traces below provide a formalization of the

randomness source from which a probabilistic program reads (as a side-effect); these must be

stochastic in order to provide new random numbers for new random variables.

Definition 2.3 (Lazy traces). A lazy trace is a random function 𝑝 : A∗ { [0, 1] mapping each

address-list to a standard uniform random variable. Lazy traces have type P(Ω) ∈ 𝑂𝑏 (Q).

Lazy traces are lazily evaluated (stochastically memoized [5]) random functions. Evaluating a

lazy trace at a set of specific hierarchical addresses yields an eager trace.

The next definition gives a semantic model in the category Q for a probabilistic program that

internally draws from a lazy trace, and then combines it with the argument to write out a likelihood

weight and an eager trace as side effects alongside the random output.

Definition 2.4 (Categories of eagerly traced measure kernels). The category MeasKer(Traced(Q))
of eagerly traced measure kernels has the same objects as Q. For domain and codomain 𝑍,𝑋 ∈
𝑂𝑏 (Q) the categoryMeasKer(Traced(Q)) has morphisms (𝑓 , 𝜔) : (Ω × 𝑍 ) → (R+

0
× T × 𝑋 ). See

Corollary B.12 in Appendix B for a diagram of these morphisms’ structure.

Since programs take lazy traces as input but log eager traces as output, reevaluating a program

or using one as a proposal for another requires embedding an eager trace into a lazy one. The

following proposition demonstrates how to do so.

Proposition 2.5 (Eager traces embed into lazy traces). Given an eager trace 𝜏 : T and a lazy
trace 𝑝 : P(Ω), the operation 𝑝 [𝜏] embeds the former into the latter

𝑝 [𝜏] = 𝛼 ↦→
{
𝜏 (𝛼)1 𝛼 ∈ dom(𝜏)
𝑝 (𝛼) otherwise

·[·] : P(Ω) × T→ P(Ω).

3 IMPORTANCEWEIGHTINGWITH TRACES
Inference based on importance sampling does not only entail sampling a trace from the proposal

and reevaluating it under the target program, but also evaluating the ratio of the trace’s densities

under the target and proposal. Modeling this semantically requires a notion of densities for measure

kernels. Theorem B.17, Corollary B.18, and Corollary B.19 show how to model densities in QBS,

subject to certain requirements met by most programs in common PPLs. We then write that

eagerly tracedmeasure kernels with densitiesMeasKer(Traced(Q)) provide unnormalized densities

𝛾 (𝑓 ,𝜔 ) (𝑥, 𝜏; 𝑧) := 𝜔 (𝑧, 𝜏, 𝑥)𝑝 𝑓 (𝑥, 𝜏 | 𝑧) for inference with traces 𝜏 : T.
The following theorem models nested importance sampling [13] compositionally in QBS.

Theorem 3.1 (Changes of measure give coslice categories of measure kernels). Consider
the image Q𝑊 ◦𝑇 ⊆ Q of the category MeasKer(Traced(Q)) in Q. The coslice category 𝐼/Q𝑊 ◦𝑇 over
this image describes how to sample from one eagerly-traced measure via another. It has eagerly traced
measures (e.g. with no parameters left to provide) as objects, and a generalization of Equation 3 from
Stites et al. [16] for importance weighting in dynamic trace-spaces as morphisms.

Proof. See Theorem C.1 in Appendix C. □

4 DISCUSSION AND FUTUREWORK
This abstract has provided a semantic model for the reading and writing of randomness traces in

probabilistic programming. Section 2 modeled for writing out random choices as an eager trace

(or simply a trace) and for reading in random choices as a lazy trace. Section 3 then showed how
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to embed an eager trace into a lazy one to reuse its randomness, and gave novel compositional

semantics for sampling from a proposal program and weighing under a target program.

Future work can use this abstract’s semantics to interpret inference metaprogramming and reason

about how to compose inference programs. The authors particularly plan to pursue semantics

for relaxing from deterministic weightings to random but proper weights [13]. Such a class of

inference procedures would provide denotational semantics for most inference programs, including

Sequential Monte Carlo, Markov chain Monte Carlo, and variational inference [9, 16].
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A A MATHEMATICAL SETTING FOR PROBABILISTIC PROGRAM SEMANTICS
A.1 Quasi-Borel spaces
Existing work typically assigns denotational semantics to higher-order probabilistic programs in

terms of the category QBS of quasi-Borel spaces and stochastic maps between them [6]. Probability

measures in this category are defined as push-forwards of probability measures over a standard

Borel space. Such a space is defined as follows.

Definition A.1 (Standard Borel space [7]). A measurable space (𝑋, Σ𝑋 ) is considered a standard
Borel space when there exist

𝑓 : Meas(𝑋,R) 𝑔 : Meas(R, 𝑋 )
𝑔 ◦ 𝑓 = 𝑖𝑑𝑋 ,

which then implies that (𝑋, Σ𝑋 ) is either countable with a discrete 𝜎-algebra or measurably iso-

morphic to the real line (𝑋, Σ𝑋 ) ≃ (R, ΣR).
The next definition will describe the right sort of sample spaces to model data-types in higher-

order probabilistic programming, assuming a fixed standard Borel space (Ω, ΣΩ) ∈ 𝑂𝑏 (Meas).
Definition A.2 (Quasi-Borel space [6]). A quasi-Borel space consists of a pair (𝑋,𝑀𝑋 ) where

𝑋 ∈ 𝑂𝑏 (Set) 𝑀𝑋 ⊆ 𝑋Ω ∈ 𝑂𝑏 (Set),
such that the set𝑀𝑋 of “random variables” satisfies the following conditions:

• It is closed under measurable endomorphisms

𝑓 : Meas(Ω,Ω) 𝜌 ∈ 𝑀𝑋

𝜌 ◦ 𝑓 ∈ 𝑀𝑋

;

• It contains all constant random variables

𝜌 : Set(Ω, 𝑋 ) ∃𝑓 : Set(Ω, 𝐼 ), ∃𝑔 : Set(𝐼 , 𝑋 ).𝑔 ◦ 𝑓 = 𝜌

𝜌 ∈ 𝑀𝑋

;

• Countable Borel partitions of the sample space Ω give countable coproduct random variables

Ω =
∐

𝑖∈N 𝑆𝑖 ∀𝑖 ∈ N, 𝜌𝑖 ∈ 𝑀𝑋

𝛽 =
∐

𝑖∈N 𝜌𝑖 ∈ 𝑀𝑋

.

In order to use quasi-Borel spaces as sample spaces for probabilistic programming, the next

definition gives a notion of a probability measure on such a space.

https://proceedings.mlr.press/v37/naesseth15.html
https://doi.org/10.1145/3064899.3064910
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Definition A.3 (Probability measure on a quasi-Borel space [6]). Given a quasi-Borel space (𝑋,𝑀𝑋 ),
a probability measure on that space consists of a pair of a random variable from𝑀𝑋 and a probability

measure on the underlying Borel space Ω

𝜌 ∈ 𝑀𝑋 ` ∈ P(Ω)
(𝜌, `) ∈ P(𝑋,𝑀𝑋 )

.

Finally, in order to give denotational semantics to higher-order probabilistic programs, quasi-

Borel spaces and maps between them must form a category. The following definition gives the

appropriate category, which Heunen et al. [6] showed to be Cartesian closed with support for

arbitrary products and countable products.

Definition A.4 (Category of quasi-Borel spaces [6]). Given a fixed standard Borel space (Ω, ΣΩ) ∈
𝑂𝑏 (Meas), the category of quasi-Borel spaces QBS has

• Quasi-Borel spaces as objects (𝑋,𝑀𝑋 ) ∈ 𝑂𝑏 (QBS), and
• Functions preserving random variables as morphisms

𝑓 : Set(𝑋,𝑌 ) ∀𝜌 ∈ 𝑀𝑋 , 𝑓 ◦ 𝜌 ∈ 𝑀𝑌

𝑓 : QBS((𝑋,𝑀𝑋 ), (𝑌,𝑀𝑌 ))
.

To use the category QBS as a model of probability theory, the next proposition will demonstrate

that it supports an affine probability monad of pushforward measures.

Proposition A.5 (QBS has a monad of pushforward measures). Given a fixed standard
Borel space (Ω, ΣΩ) ∈ 𝑂𝑏 (Meas) and a probability measure 𝑝 ∈ P(Ω) on it, probability measures on
quasi-Borel spaces form a strong, affine probability monad (P, [, `).

Proof. See Proposition 5.8 in Dash et al. [3] or Theorem 21 in Heunen et al. [6]. □

Finally, the next proposition shows that the resulting Kleisli category of monadic morphisms

forms a Markov category, a synthetic model of probability theory (see Fritz [4] for definition).

Proposition A.6 (Probability kernels in QBS form a Markov category). Probability kernels
QBS(𝑍, P(𝑋 )) in QBS form a Markov category Q, a semicartesian symmetric monoidal category.

The next subsection will demonstrate that Q forms the right kind of Markov category to describe

in terms of reading randomness from a random-number generator or trace.

A.2 Randomness pushback as semantics for randomness sources
Operationally, probabilistic programs sample from various distributions by drawing variates from a

random-number generator, whose state must be passed along as an extra input to each subprogram.

This operation receives semantics in a Markov category in terms of randomness pushback. This

subsection describes randomness pushback, demonstrates that the Markov category QBS has

randomness pushback, and then describes a convenient formulation of randomness pushback

previously used in the literature to represent the operations of probabilistic programs.

Definition A.7 (Randomness pushback [4]). AMarkov categoryM has randomness pushback if and
only if for every morphism 𝑓 : M(𝑍,𝑋 ) there exists a randomness object Υ ∈ 𝑂𝑏 (M), a distribution
over that randomness object 𝑝 : M(𝐼 , Υ), and a deterministic mapping 𝑘 : M𝑑𝑒𝑡 (Υ × 𝑍,𝑋 ) which
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together yield an isomorphism

𝑓 ≃

𝑝 𝑍

Υ

𝑘

𝑋

.

In effect, Definition A.7 says that in a Markov category with randomness pushback, every
morphism is equivalent to some deterministic pushforward of an independent source of randomness.

Up until now, we have not described the standard Borel space (Ω, ΣΩ) we use to construct QBS.
The next definition will give a concrete space, taken from Dash et al. [3] with slight modification,

and show that it is standard Borel.

Definition A.8 (Infinite rose tree [3]). Assume that there exists a countably infinite set, here taken

to be the natural numbersN, and also consider the finite lists over that setN∗
. Then the set of infinite

rose trees consists of countably infinitely wide, countably infinitely deep trees, here annotated with

an element of the unit interval at each node

Ω = [0, 1] ×
∏
𝑛∈N

Ω

= [0, 1]N∗
.

The second line interprets each list of natural numbers as addressing a path into the tree from its

root node, yielding the unit interval element found at that node. We then make this space an object

in the category of measure spaces by equipping it with a product 𝜎-algebra consisting of countably

many copies of the Borel 𝜎-algebra for the unit intervals at the nodes

ΣΩ =
∏
𝑛∈N∗

Σ[0,1]

(Ω, ΣΩ) ∈ 𝑂𝑏 (Meas).

Dash et al. [3] took infinite rose trees as their base sample space for treating probabilistic programs

as quasi-Borel (and therefore quasi-measurable) maps. The next proposition shows that the space

of infinite rose trees is standard Borel.

Proposition A.9 (Infinite rose trees are standard Borel spaces). The space Ω = [0, 1]N∗
is

a standard Borel space.

Proof. The countability of both the natural numbers and their finite lists implies that we can

biject lists of natural numbers onto natural numbers

N∗ ≃ N
and therefore line up countably many copies of the unit next to each other

Ω ≃
∏
𝑛∈N

[0, 1]

to reassemble the real number line. Definition A.1 then shows that Ω is standard Borel. □

Having that the infinite rose tree provides a standard Borel sample space, the next definition will

give a probability measure over infinite rose trees. Intuitively, this distribution models generating

an infinite, lazily-evaluated stream of draws from the standard uniform distribution, placing one at

each node of an infinite rose tree.
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Definition A.10 (Uniform distribution over infinite rose trees). The uniform distribution over infinite

rose trees consists of a countably infinite product of standard uniform distributions. It therefore

assigns probability to measurable sets 𝜎Ω ∈ ΣΩ by taking the countable product of probability

assigned by the standard uniform distribution to each measurable set’s countable components

` : P(Ω)
` : Meas(𝐼 , P(Ω, ΣΩ))

` (𝐼 ) = 𝜎Ω ↦→
∏
𝛼∈A∗

𝑈 (0, 1) ((𝜎Ω)𝛼 ) .

Having a concrete sample space Ω and a standard probability measure ` over it, the next theorem

will demonstrate that the Markov category Q thereby has randomness pushback.

Theorem A.11 (Probability kernels in Q have randomness pushback). The category Q (of
probability kernels between quasi-Borel spaces) has randomness pushback (Definition A.7)

𝑓 : Q(𝑍,𝑋 )
∃Υ ∈ 𝑂𝑏 (Q), ∃𝑘 : QUS𝑑𝑒𝑡 (𝑍,𝑋ΩN ), ∃𝑝 : Q(𝐼 , P(Υ)), 𝑓 ≃ 𝑧 ↦→ 𝜎𝑋 ↦→

∫
𝜐∈Υ I[𝑘 (𝑧) (𝜐) ∈ 𝜎𝑋 ]𝑝 (𝑑𝜐)

.

Proof. We first observe that

Q(𝑍,𝑋 ) = QBS(𝑍, P(𝑋 ))
and therefore, upon expansion to further detail

𝑓 : Q(𝑍,𝑋 )
𝑓 : QBS(𝑍, P(𝑋,𝑀𝑋 ))

.

Definition A.3 requires that 𝑓 must map from the parameter 𝑍 to a random variable 𝜌 ∈ 𝑀𝑋

𝑓 : QBS(𝑍, P(𝑋,𝑀𝑋 ))
𝑓 ≃ 𝑣 : QBS𝑑𝑒𝑡 (𝑍,𝑀𝑋 )

which can combine with the uniform distribution ` : P(Ω) to witness randomness pushback

Υ := Ω 𝑘 := 𝑣 𝑝 := `

𝑓 (𝑧) = 𝜎𝑋 ↦→
∫
𝜐∈Υ
I[𝑘 (𝜐, 𝑧) ∈ 𝜎𝑋 ] 𝑝 (𝑑𝜐)

𝑓 (𝑧) = 𝜎𝑋 ↦→
∫
𝜔∈Ω

I[𝑣 (𝑧) (𝜔) ∈ 𝜎𝑋 ] ` (𝑑𝜔).

□

Theorem A.11 shows Q to be a Markov category with randomness pushback, licensing us to treat

probability kernels as maps that deterministically push forward the uniform distribution over the

sample space Ω. Probability kernels in Q serve as models for higher-order probabilistic programs

that read from a randomness source to perform sample operations. The next subsection will further

build up a model of probabilistic programs with a factor operation for observing feedback.

A.3 Measure kernels model probabilistic programs with unnormalized measures
Probabilistic programs do not only serve as random simulators. They also incorporate data by

means of observe, score, or factor primitives. Doing so then denotes a non-probability measure

over the sample space, whose integral across the whole sample space will have be arbitrary. Since

the Markov category Q only models probability kernels, an additional weighting construction is

required to model kernels with unnormalized measures, appropriately called measure kernels.
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This subsection models weightings as morphisms Q(·,R+
0
) into the positive reals, and the next

proposition demonstrates that such weightings can form a writer monad. This writer monad can

lift probability kernels into measure kernels, and models the operation of executing a probabilistic

program that reads randomness and writes out a weight to the inference state.

Proposition A.12 (Weightings form a writer monad
1
). Weightings (morphisms Q(·,R+

0
))

induce a commutative writer monad.

Proof. Let (R+
0
, 1, ·) be the multiplication monoid over the positive reals. A writer monad for

such a monoid consists of an endofunctor

𝑊 : Q → Q
𝑊 (𝑍 ) = R+

0
× 𝑍 𝑊 (𝑍 ) : 𝑂𝑏 (Q) → 𝑂𝑏 (Q)

𝑊 (𝑓 ) = 𝑖𝑑R+
0

× 𝑓 𝑊 (𝑓 ) : Q(𝑍,𝑋 ) → Q(R+
0
× 𝑍,R+

0
× 𝑋 ),

with natural transformations for the unit

[ : Id →𝑊

[𝑍 (𝑧) = (1, 𝑧) [𝑍 : Q(𝑍,R+
0
× 𝑍 )

and multiplication

` :𝑊 ◦𝑊 →𝑊

`𝑍 (𝑤,𝑤 ′, 𝑧) = (𝑤𝑤 ′, 𝑧) `𝑍 : Q(R+
0
× R+

0
× 𝑍,R+

0
× 𝑍 ).

□

Note that the Kleisli category of the weightings writer monad is not affine, as every weighting

over an object yields a different morphism from that object to the unit 𝐼 ∈ 𝑂𝑏 (𝐾𝑙 (𝑊 )).

Definition A.13 (Categories of measure kernels). The category of measure kernels MeasKer(Q) ⊆
Kl(𝑊 ) is the symmetric monoidal subcategory formed by considering Kleisli morphisms with

deterministic weightings

𝑓 : Q(𝑍,𝑋 ) 𝜔 : Q𝑑𝑒𝑡 (𝑍 × 𝑋,R+
0
)

(𝑓 , 𝜔) =

𝑍

𝑓

𝜔

R+
0

𝑋

: Kl(𝑊 ) (𝑍,𝑋 ).

We call such a morphism a measure kernel (𝑓 , 𝜔) : MeasKer(Q)(𝑍,𝑋 ).

B A NOVEL CATEGORY OF TRACING MEASURE KERNELS
Probabilistic programs typically emit traces andweights as they execute. The traces contain densities

and random variates from a basic family of random variables, and combining the density over

traces from a program with the weight emitted by that program gives an unnormalized density,

corresponding to an unnormalized measure. This section will give a model in QBS of tracing

measure kernels with densities. Section B.1 formalizes tracing by means of addressing random

1
Example 5.1.7 in [14]
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variables and their sample spaces. Section B.3 describes a way to interpret spaces of traces as having

a base measure, and therefore as having densities induced by tracing probability kernels. Finally,

Section B.2 extends the density construction to tracing measure kernels.

B.1 Formalizing tracing by addressing random variables
Definition A.8 and Theorem A.11 showed that morphisms in Q draw their randomness from

an abstraction of the traces used in typical PPLs. This subsection will bring the model closer to

actually-existing tracing. It considers a countably infinite set A of addresses, analogous to the set of

strings in Python-based PPLs [1, 12] or the set of symbols in Lisp-based PPLs [5, 17, 19]. This set

must include an empty address Y ∈ A. Bounded sequences of addresses then form a space A∗
of

hierarchical addresses, which will also be countably infinite.

Addresses will be coupled to an element of a countable set S of support types, and so the first

definition gives that set explicitly.

Definition B.1 (Sample-space types). Support or sample-space types s ∈ S are drawn from the

following grammar

S := 𝐼 | N | Z | R | R+
0
| [0, 1] | [1..𝑛] : 𝑛 ∈ N,

and the relevant quasi-Borel spaces are denoted by ⟦s⟧ ∈ 𝑂𝑏 (QBS). We can then also denote

standard base measures over these (counting measure for discrete types, Lebesgue measure for

continuous ones) as `⟦s⟧.

The next definition shows how to use addresses to denote paths in infinite rose trees, giving a

sample space that straightforwardly generalizes tracing in PPLs.

Definition B.2 (Addressed infinite rose trees). Addressed infinite rose trees consist of mappings

from bounded address sequences to elements of the unit interval

Ω =
∏
𝛼∈A∗

[0, 1]

= [0, 1]A∗
.

We can quickly justify the use of addressed infinite rose trees as a sample space, just as Proposi-

tion A.9 did for infinite rose trees over natural numbers.

Proposition B.3 (Addressed infinite rose trees are standard Borel spaces). The space of
addressed infinite rose trees Ω = [0, 1]A∗

is a standard Borel space and a measure space

( [0, 1]A∗
, Σ[0,1]A∗ ) ∈ 𝑂𝑏 (Meas).

Proof. The setA is countably infinite, so its finite list setA∗
is countably infinite. Being countable,

we can just assign a natural number 𝛼 ≃ 𝑛 to each address 𝛼 ∈ A∗
and then apply Proposition A.9.

□

From here on, we will assume that we have constructed the category QBS with respect to a

universal sample space of addressed infinite rose trees

Ω = [0, 1]A∗

(Ω, ΣΩ) ∈ 𝑂𝑏 (Meas).
We then define randomness sources in this universal sample space.

Definition B.4 (Lazy traces). A lazy trace is a probability measure 𝑝 : P(Ω) randomly assigning

standard uniform variates to each address list and sample-space type.
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Intuitively, a lazy trace is a random function under lazy evaluation
2
. When called with a novel

argument, it samples from a standard uniform distribution and associates the new random variate

with the argument.When calledwith an argument previously evaluated, it just returns the associated

random variate. This interpretation provides operational intuition, but Proposition B.3 demonstrates

that this is an appropriate standard randomness source for higher-order probability.

The next definition will use the notation

𝑍 ⇀𝑛 𝑋 = (𝑋𝑍 )𝑛
to refer to partial functions from 𝑍 ∈ 𝑂𝑏 (Set) to𝑋 ∈ 𝑂𝑏 (Set) defined at only 𝑛 arguments, assumed

to be ordered. Such a partial function returns a privileged value ⊥ where it is not defined. The

following definition then models the common meaning of “trace” in probabilistic programming: a

dictionary mapping addresses to random variates. It makes use of the fact that QBS has countable

indexed coproducts.

Definition B.5 (Eager traces). An eagerly-evaluated trace is a partial function, defined at finitely

many values, from address lists to unit interval elements and dependent pairs of sample type

T :=
∐
𝑛∈N

(A∗) ⇀𝑛 [0, 1] ×
∐
s∈S

⟦s⟧ ∈ 𝑂𝑏 (Q) .

Eager traces form an object in Q because they are finite sets of pairs in which no first element

repeats. Working with this set-theoretic notion of a partial function implies trivial definitions of

cardinality, domain, and codomain operations for eager traces:

| · | : T→ N

dom : T→
∐
𝑛∈N

(A∗ × S)𝑛 cod : T→
∐
𝑛∈N

[0, 1]𝑛 .

Probability kernels inQ take their randomness pushback from lazy traces. Reusing or reevaluating

the random variates from an eager trace therefore requires embedding it into a lazy trace. The next

proposition shows how to do so.

Proposition B.6 (Eager traces embed into lazy traces). Given a lazy trace 𝑝 : P(Ω) and an
eager trace 𝜏 : T, the operation 𝑝 [𝜏] embeds the latter into the former.

Proof. Given an infinite rose tree𝜔 ∼ P(Ω) and an eager trace 𝜏 : T, the operation𝜔 [𝜏] embeds

the latter into the former

𝜔 [𝜏] = 𝛼 ↦→
{
𝜏 (𝛼)1 𝛼 ∈ dom(𝜏)
𝜔 (𝛼) otherwise

·[·] : Ω × T→ Ω.

We can therefore see that

𝑝 [𝜏] = (𝜔 ↦→ 𝜔 [𝜏]) ◦ 𝑝.

□

The next definition will specialize randomness pushback to permit separating the stochastic and

deterministic portions of a probability kernel. Such morphisms will later be seen to admit a notion

of a base measure and density on their trace subobjects.

2
Or in eagerly evaluated languages, a stochastically memoized function [5].
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Definition B.7 (Randomness projection). A probability kernel (𝑝, 𝑞, 𝑘) : Q(𝑍,𝑋 ) admits a random-
ness projection when it “squeezes” all randomness through an internal wire conveying a subobject

𝑖 : T𝑞 ↩→Q𝑑𝑒𝑡
T of the eager traces.

𝑝 : Q(𝐼 ,Ω) 𝑞 : Q𝑑𝑒𝑡 (Ω × 𝑍,T𝑞) 𝑘 : Q𝑑𝑒𝑡 (T𝑞 × 𝑍,𝑋 )

(𝑝, 𝑞, 𝑘) =

𝑝 𝑍

Ω

𝑞

T𝑞

𝑘

𝑋

: Q(𝑍,𝑋 ).

Since the subobject T𝑞 may have only a subset of the random variables𝑀T𝑞 of T as a whole, it must

additionally be invariant to re-embedding into the lazy trace

𝑝 𝑍

Ω

𝑞

𝑖

· [ · ]

Ω

𝑞

T𝑞

=

𝑝 𝑍

Ω

𝑞

T𝑞

.

The following proposition will show the connection between a common class of probability

kernels and randomness projection. We leave considerations regarding infinite-dimensional random

variables, such as Bayesian nonparametric models, to future work.

Proposition B.8 (Probability kernels over standard sample spaces with qantile func-

tions have randomness projection). A probability kernel 𝑓 : Q(𝑍,𝑋 ) admitting a quantile
function (e.g. inverse CDF) 𝐹 −1 : Meas(𝑍 × [0, 1], 𝑋 ) has randomness projection if ∃s ∈ S.𝑋 = ⟦s⟧.

Proof. We need only write the probability kernel 𝑓 : Q(𝑍,𝑋 ) in the form

𝑝 : Q(𝐼 ,Ω) 𝑞 : Q𝑑𝑒𝑡 (Ω × 𝑍,T𝑞) 𝑘 : Q𝑑𝑒𝑡 (T𝑞 × 𝑍,𝑋 )
required by Definition B.7 to fill in the diagram. By Theorem A.11 we know that we can use the

standard lazy trace as 𝑝 . We then pick the empty address Y ∈ A and fill in the diagram

𝑞(𝜔, 𝑧) = 𝛼 ↦→
{
(𝜔 (Y), (s, 𝐹 −1 (𝑧, 𝜔 (Y)))) 𝛼 = Y

⊥ otherwise

𝑘 (𝜏, 𝑧) = 𝜏 (Y)2.
□

In practice, most PPLs provide only random variables with quantile functions, and their out-

puts consist of deterministic quasi-Borel maps on those random variables. Finite-dimensional

randomness pushback can therefore model most PPLs without loss of generality.
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Intuitively, if a probability kernel has randomness projection, then a writer monad can capture

the eager traces for later examination.

Proposition B.9 (Eager traces form a writer monad). Eager traces T induce a writer monad
for which probability kernels with randomness projection can serve as Kleisli morphisms.

Proof. Let (T, ∅, ⊙) be a monoid over eager traces defined by constructing binary trees over

hierarchical addresses. A writer monad for such a monoid consists of an endofunctor

𝑇 : Q → Q
𝑇 (𝑍 ) = T × 𝑍 𝑇 (𝑍 ) : 𝑂𝑏 (Q) → 𝑂𝑏 (Q)
𝑇 (𝑓 ) = 𝑖𝑑T × 𝑓 𝑇 (𝑓 ) : Q(𝑍,𝑋 ) → Q(T × 𝑍,T × 𝑋 ),

with natural transformations for the unit

[ : Id → 𝑇

[𝑍 (𝑧) = (∅, 𝑧) [𝑍 : Q(𝑍,T × 𝑍 ),

and multiplication

` : 𝑇 ◦𝑇 → 𝑇

`𝑍 (𝜏, 𝜏 ′, 𝑧) = (𝜏 ⊙ 𝜏 ′, 𝑧) `𝑍 : Q(T × T × 𝑍,T × 𝑍 ).

□

This writer monad will have its own Kleisli category, which admits a trivial embedding of any

morphism with randomness projection.

Definition B.10 (Eagerly traced probability kernels). The category of eagerly traced probability

kernels Traced(Q) ⊆ 𝐾𝑙 (𝑇 ) (Q) is the image of the following functor from the subcategory QT ⊆ Q
with randomness projection into the Kleisli category of the writer monad:

𝐹 : QT → 𝐾𝑙 (𝑇 ) (Q)
𝐹 (𝑍 ) = T × 𝑍 𝐹 (𝑍 ) : 𝑂𝑏 (QT) → 𝑂𝑏 (𝐾𝑙 (𝑇 ) (Q))

𝐹 ((𝑝, 𝑞, 𝑘)) : QT (𝑍,𝑋 ) → 𝐾𝑙 (𝑇 ) (Q)(𝑍,𝑋 )

𝐹 ((𝑝, 𝑞, 𝑘)) =

𝑝 𝑍

𝑞

𝑖 𝑘

T 𝑋

: Traced(Q)(𝑍,𝑋 ).

B.2 Eagerly traced measure kernels
Proposition B.11 (Theweightingmonad composeswith the tracing monad). The weighting

monad above (Proposition A.12) composes with the tracing monad above (Proposition B.9) to form a
monad for weighted, eagerly traced probability kernels.
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Proof. While monads in general do not compose, writer monads do (non-commutatively)

compose. We obtain an endofunctor

𝑊 ◦𝑇 : Q → Q
(𝑊 ◦𝑇 ) (𝑍 ) = R+

0
× T × 𝑍 (𝑊 ◦𝑇 ) (𝑍 ) : 𝑂𝑏 (Q) → 𝑂𝑏 (Q)

(𝑊 ◦𝑇 ) (𝑓 ) = 𝑖𝑑R+
0

× 𝑖𝑑T × 𝑓 (𝑊 ◦𝑇 ) (𝑓 ) : Q(𝑍,𝑋 ) → Q(R+
0
× T × 𝑍,R+

0
× T × 𝑋 ),

whose Kleisli category will have Kleisli morphisms

𝑓 : 𝐾𝑙 (𝑊 ◦𝑇 ) (Q)(𝑍,𝑋 )
𝑓 : 𝐾𝑙 (𝑊 ◦𝑇 ) (Q)(𝑍,R+

0
× T × 𝑋 ).

□

Note that the above monads are not affine: in programming terms, a Kleisli morphism of either

monad still has a stateful effect (logs an output trace and/or weight) even if it produces no output.

Corollary B.12 (Categories of measure kernels on eagerly traced probability kernels).

The category of measure kernels on eagerly traced probability kernels

MeasKer(Traced(Q)) ⊆ 𝐾𝑙 (𝑊 ◦𝑇 ) (Q) .

consists of trace-recording morphisms that also record a deterministic weight based on their domain,
trace, and codomain.

Proof. We consider a measure kernel on a traced Markov kernel (𝑓 , 𝜔) : MeasKer(Traced(Q)).
This consists of a trace-recording Markov kernel

𝑓 : Traced(Q)(𝑍,𝑋 )
𝑓 : Q(𝑍,T × 𝑋 ),

and a deterministic weighting over the Markov kernel’s domain and codomain in Q

𝜔 : Q𝑑𝑒𝑡 (𝑍 × T × 𝑋,R+
0
).

We interpret these according to the diagram

(𝑓 , 𝜔) : MeasKer(Traced(Q))(𝑍,𝑋 )
(𝑓 , 𝜔) : Q(𝑍,R+

0
× T × 𝑋 )

(𝑓 , 𝜔) =

𝑍

𝑓

𝜔

R+
0

T 𝑋

.

□



14 Sennesh and Lew, et al.

B.3 Base measures and densities for eagerly traced kernels
Monte Carlo inference often requires evaluating the target measure’s density at the points obtained

by random sampling. While probabilistic programs operationally encode probability densities over

their traces, densities have not been defined or shown to exist for probability kernels in QBS

(and many other Markov categories). This section will define a natural notion of base measure on

probability and measure kernels supporting eager tracing in the form of randomness pushback

(Definition A.7) and randomness projection (Definition B.7).

The first definition gives the Lebesgue measure over infinite rose trees.

Definition B.13 (Lebesgue measure on an infinite rose tree). The space of infinite rose trees Ω =

[0, 1]A∗
admits a Lebesgue measure defined via the Lebesgue measure _ : Σ[0,1] → R+0

_Ω : ΣΩ → R+
0

_Ω (𝜎) =
∏
𝛼∈A∗

_(𝜎𝛼 ).

The following proposition demonstrates that this is a 𝜎-finite measure.

Proposition B.14 (The Lebesgue measure on infinite rose trees is 𝜎-finite). The Lebesgue
measure _Ω on the space of infinite rose trees (Ω, ΣΩ) ∈ Meas is 𝜎-finite.

Proof. Each address list in the countable space A∗
indexes a copy of the 𝜎-algebra Σ[0,1] over

the unit interval, and thus indexes a family of measurable subsets of the space of infinite rose trees.

Picking the full unit interval from each “copy”, we then have a countable family of disjoint sets

each of which has Lebesgue measure 1.

Or more intuitively, since we can assemble the real line out of countably many unit intervals,

the Lebesgue measure on that countable product of unit intervals is 𝜎-finite. □

The next definition restates Proposition 14 of Heunen et al. [6].

Definition B.15 (𝜎-algebra on a quasi-Borel space). Given a base sample space Ω for the category

QBS, the collection of all measurable subsets of a quasi-Borel space (𝑋,𝑀𝑋 ) ∈ 𝑂𝑏 (QBS), and the

𝜎-algebra for that space, is defined as

Σ𝑀𝑋
:= {𝑆 ⊆ 𝑋 : ∀𝜌 ∈ 𝑀𝑋 , 𝜌

−1 (𝑆) ∈ ΣΩ}
(𝑋, Σ𝑀𝑋

) ∈ 𝑂𝑏 (Meas),

and this implies that quasi-Borel maps also induce measurable maps

𝑓 : QBS((𝑋,𝑀𝑋 ), (𝑌,𝑀𝑌 ))
𝑓 : Meas((𝑋, Σ𝑀𝑋

), (𝑌, Σ𝑀𝑌
))

.

The following proposition gives a base measure on eager traces.

Definition B.16 (Base measure over eager traces). Eager traces have a sensible base measure defined
by a sum of products, where the last component in each product is a sum over the indexed coproduct

(T, 𝑀T) ∈ 𝑂𝑏 (QBS)
(T, Σ𝑀T ) ∈ 𝑂𝑏 (Meas)

`T : Σ𝑀T → R+0
`T (𝜎𝑀T ) =

∑︁
𝜏∈𝜎𝑀T

∏
(𝛼,s) ∈dom(𝜏 )

`A∗ (𝛼)_[0,1] (𝜏 (𝛼)1)
∑︁
s′∈S

𝛿s (s′)`⟦s⟧ (𝜏 (𝛼)3).
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The following theorem demonstrates that eagerly traced probability kernels support density

functions over their traces.

Theorem B.17 (Eagerly traced probability kernels support densities). Given an eagerly
traced probability kernel 𝑓 ≃ (𝑝, 𝑞, 𝑘) : Traced(Q)(𝑍,𝑋 ), there exists a Radon-Nikodym derivative
with respect to the base measure on traces

𝑓 (𝑧) (𝜎𝑀T ) =
∫
𝜎𝑀T

𝑑 𝑓

𝑑`T
𝑑`T .

Proof. By Definition A.3, the given probability kernel maps takes inputs 𝑧 ∈ 𝑍 to a random

variable that pushes forward a probability measure on Ω

𝜌 ∈ 𝑀⟦s⟧ `Ω ∈ P(Ω)
𝑝 = (𝜌, `Ω).

Definition B.16 gives a base measure over eager traces with respect to which we can integrate,

which being a sum of products of 𝜎-finite measures (counting measure and Lebesgue measure)

is itself 𝜎-finite. The probability measure and this base measure both cover the space, and so the

former is absolutely continuous with respect to the latter. The Radon-Nikodym Theorem then

implies the existence of the desired derivative by virtue of the numerator being a pushforward of a

standard probability measure and the denominator being a restriction a base measure to a subspace

𝑑 𝑓

𝑑`T
=
𝑑 (𝑞(·, 𝑧)∗ (𝑝))

𝑑`T
.

□

We can extend this result to give a notion of densities on eagerly traced probability kernels.

Corollary B.18 (Eagerly traced probability kernels have densities). For each morphism
𝑓 ≃ (𝑝, 𝑞, 𝑘) : Traced(Q)(𝑍,𝑋 ) consisting of a randomness pushback, randomness projection, and
deterministic transformation, there exists a notion of a density over traces in general

𝑝 𝑓 (· | 𝑧) : Q𝑑𝑒𝑡 (𝑍 × T,R+
0
).

Proof. Theorem B.17 directly implies that there exists a Radon-Nikodym derivative

𝑑 𝑓

𝑑`T𝑞
: Q𝑑𝑒𝑡 (𝑍 × T𝑞,R+0 ),

and so we merely need extend this to a proper density on the full space of traces. We do so by first

giving the notion of embedding an eager trace into the kernel’s lazy trace and reevaluating

𝑞′ (𝜏, 𝑧) := 𝑞(𝑝 [𝜏], 𝑧) 𝑞′ : Q(T × 𝑍,T𝑞).
We then utilize the injection 𝑖 : T𝑞 ↩→ T to define the desired density by case analysis

𝑝 𝑓 (· | 𝑧) =
{
𝑑 (𝑞 ( ·,𝑧 )∗ (𝑝 ) )

𝑑`T𝑞

(
𝑖−1 (𝜏)

)
𝑖 (𝑞′ (𝜏, 𝑧)) = 𝜏

0 otherwise

.

□

The first case in the proof above corresponds to the notion of a probabilistic program’s support

from Stites et al. [16], while the extension to the broader space of traces corresponds to the notion

of probabilistic program support in Cusumano-Towner et al. [2].

We can then proceed to the subcategory modeling typical probabilistic programs, one of eagerly

traced measure kernels with unnormalized densities.
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Corollary B.19 (Eagerly traced measure kernels have unnormalized densities). An
eagerly traced measure kernel We call (𝑓 , 𝜔) : MeasKer(Traced(Q))(𝑍,𝑋 ) has an unnormalized
density 𝛾 (𝑓 ,𝜔 ) (𝜏 ; 𝑧) over traces and 𝛾 (𝑓 ,𝜔 ) (𝑥, 𝜏 ; 𝑧) over traces and outputs.

Proof. Follows directly from Corollary B.18 and Corollary B.12

(𝑓 , 𝜔) : MeasKer(Traced(Q))(𝑍,𝑋 ) 𝑓 ≃ 𝑝 𝑓 (𝜏 | 𝑧)
𝑓 ≃ (𝑝, 𝑞, 𝑘)

𝛾 (𝑓 ,𝜔 ) (𝜏 ; 𝑧) := 𝜔 (𝑧, 𝜏, 𝑘 (𝜏, 𝑧))𝑝 𝑓 (𝜏 | 𝑧) 𝛾 (𝑓 ,𝜔 ) (𝑥 ;𝜏, 𝑧) := I[𝑥 = 𝑘 (𝜏, 𝑧)] .

□

C CHANGES OF MEASURE KERNEL VIA TRACING, FROM PROPOSAL TO TARGET
Theorem C.1 generalizes Equation 3 of Stites et al. [16].

Theorem C.1 (Changes of measure give coslice categories of measure kernels). Consider
a categoryMeasKer(Traced(Q)) of eagerly traced measure kernels. Its image Q𝑊 ◦𝑇 ⊆ Q then admits
a coslice category 𝐼/Q𝑊 ◦𝑇 , which will have

• Objects (𝑓 , 𝜔 𝑓 ) ∈ 𝑂𝑏 (𝐼/Q𝑊 ◦𝑇 ) where (𝑓 , 𝜔 𝑓 ) : MeasKer(Traced(Q))(𝐼 , 𝑍 );
• Morphisms (𝑐, 𝜔𝑐 ) : (𝐼/Q𝑊 ◦𝑇 ) ((𝑓 , 𝜔 𝑓 ), (𝑔,𝜔𝑔)) where

(𝑓 , 𝜔 𝑓 ) : MeasKer(Traced(Q))(𝐼 , 𝑍 ) (𝑔,𝜔𝑔) : MeasKer(Traced(Q))(𝐼 , 𝑋 )
(𝑐, 𝜔𝑐 ) : Q(R+

0
× T × 𝑍,R+

0
× T × 𝑋 )

(𝑐, 𝜔𝑐 ) ◦Q (𝑓 , 𝜔 𝑓 ) = (𝑔,𝜔𝑔).

These coslice morphisms (𝑐, 𝜔𝑐 ) will correspond to change-of-measure ratios incorporated into the
weightings.

Proof. Each coslice morphism (𝑐, 𝜔𝑐 ) in the coslice category has as domain and codomain two ea-

gerly tracedmeasure kernels (𝑓 , 𝜔 𝑓 ) : MeasKer(Traced(Q))(𝐼 , 𝑍 ) and (𝑔,𝜔𝑔) : MeasKer(Traced(Q))(𝐼 , 𝑋 ),
which will give rise to unnormalized densities we write in terms of the randomness traces, or

random variables 𝑧 (𝜏𝑓 , 𝐼 ), 𝑥 (𝜏𝑔, 𝐼 ),

(𝑓 , 𝜔 𝑓 ) ≃ 𝛾 (𝑓 ,𝜔 𝑓 ) (𝜏𝑓 ; 𝐼 )
(𝑔,𝜔𝑔) ≃ 𝛾 (𝑔,𝜔𝑔 ) (𝜏𝑔; 𝐼 ).

We construct a probability kernel between the codomains (including the writer-monad outputs)

which takes advantage of randomness projection on𝑔. In order to do so, we will utilize the entrywise

cumulative distribution functions 𝑃𝑔 and 𝑃𝑓 on the elements of traces

𝑃𝑓 (𝜏𝑓 (𝛼) | 𝜏𝑓 /𝛼) =
∫ 𝜏𝑓 (𝛼 )3

𝑠∈⟦𝜏𝑓 (𝛼 )2⟧
𝑝 𝑓 (𝑠 | 𝜏𝑓 /𝛼)

𝑃𝑔 (𝜏𝑔 (𝛼) | 𝜏𝑔/𝛼) =
∫ 𝜏𝑔 (𝛼 )3

𝑠∈⟦𝜏𝑔 (𝛼 )2⟧
𝑝𝑔 (𝑠 | 𝜏𝑔/𝛼).
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We then define the coslice morphism (𝑐, 𝜔𝑐 ) : MeasKer(Traced(Q))(R+
0
× T × 𝑍,𝑋 ) in terms of its

components, first an eagerly traced probability kernel

𝑐 : Traced(Q)(R+
0
× T × 𝑍,𝑋 )

𝑔 ≃ (𝑝𝑔, 𝑞𝑔, 𝑘𝑔) : Q(𝐼 ,T × 𝑋 )
𝑞′𝑔 : Q(T × 𝑍,T𝑞𝑔 )

𝑞′𝑔 (𝜏𝑓 , 𝑧) = 𝛼𝑖 ↦→
{
𝑃𝑔

(
𝑃−1
𝑓

(
𝜏𝑓 (𝛼𝑖 )3 | 𝜏𝑓 /𝛼, 𝑧

)
| 𝑞′𝑔 (𝜏𝑓 , 𝑧) (1:(𝑖−1) )

)
(𝛼𝑖 , s𝑖 ) ∈ dom(𝜏𝑓 )

(𝑞𝑔 (·, 𝑧) ◦ 𝑝𝑔) (𝛼𝑖 ) otherwise

where

s𝑖 = (𝑞𝑔 (·, 𝑧) ◦ 𝑝𝑔) (𝛼𝑖 )2

𝑐 (𝑤 𝑓 , 𝜏𝑓 , 𝑧) =

R+
0
T 𝑍

·

𝑞′𝑔

𝑘𝑔

T 𝑋

,

and second a weighting 𝜔𝑐 : Q𝑑𝑒𝑡 (R+0 ×T×𝑍 ×T×𝑋,R+
0
) that cancels the domain density in favor

of the codomain density:

𝜔𝑐 (𝑤 𝑓 , 𝜏𝑓 , 𝑧, 𝜏𝑔, 𝑥) =
𝛾 (𝑔,𝜔𝑔 ) (𝜏𝑔; 𝐼 )

𝜔 𝑓 (𝐼 , 𝜏𝑓 , 𝑧)
∏

(𝛼,s) ∈dom(𝜏𝑓 )∩dom(𝜏𝑔 ) 𝑝 𝑓 (𝜏𝑓 (𝛼) | 𝜏𝑓 /𝛼)
. (1)

In addition to Equation 1 porting the importance weight of Equation 3 from Stites et al. [16] to a

categorical setting, it also equals the Lightweight Metropolis-Hastings acceptance ratio [19].

Equality for measure kernels is defined by observational equivalence, so to have a proper

importance sampling procedure, we now need to verify that for arbitrary test statistics ℎ : Q𝑑𝑒𝑡 (T×
𝑋,𝑌 )

(𝑐, 𝜔𝑐 ) ◦ (𝑓 , 𝜔 𝑓 ) = (𝑔,𝜔𝑔)
E𝑝𝑓 (𝜏𝑓 ,𝑧 |𝐼 )

[
𝜔 𝑓 (𝐼 , 𝜏𝑓 , 𝑧)E𝑝𝑐 (𝜏𝑔,𝑥 |𝜏𝑓 ,𝑧 )

[
𝜔𝑐 (𝜏𝑓 , 𝑧, 𝜏𝑔, 𝑥)ℎ(𝜏𝑔, 𝑥)

] ]
= E𝑝𝑔 (𝜏𝑔,𝑥 |𝐼 )

[
𝜔𝑔 (𝐼 , 𝜏𝑔, 𝑥)ℎ(𝜏𝑔, 𝑥)

]∫
𝑧∈𝑍

∫
𝑥∈𝑋

ℎ(𝜏𝑔, 𝑥) 𝛾 (𝑐,𝜔𝑐 ) (𝜏𝑔;𝜏𝑓 )𝑑𝑥 𝛾 (𝑓 ,𝜔 𝑓 ) (𝜏𝑓 ; 𝐼 ) 𝑑𝑧 =
∫
𝑥∈𝑋

ℎ(𝜏𝑔, 𝑥) 𝛾 (𝑔,𝜔𝑔 ) (𝜏𝑔; 𝐼 )𝑑𝑥.

Weobserve that substituting𝜔𝑐 (𝜏𝑓 , 𝑧, 𝜏𝑔, 𝑥) into the product of densities andweights on the left-hand
side allows us to cancel a number of terms

𝛾 (𝑓 ,𝜔 𝑓 ) (𝜏𝑓 ; 𝐼 )𝛾 (𝑐,𝜔𝑐 ) (𝜏𝑔;𝜏𝑓 ) = 𝛾 (𝑓 ,𝜔 𝑓 ) (𝜏𝑓 ; 𝐼 )𝑝𝑐 (𝜏𝑔, 𝑥 | 𝜏𝑓 , 𝑧)𝜔𝑐 (𝜏𝑓 , 𝑧, 𝜏𝑔, 𝑥)

𝛾 (𝑓 ,𝜔 𝑓 ) (𝜏𝑓 ; 𝐼 )𝛾 (𝑐,𝜔𝑐 ) (𝜏𝑔;𝜏𝑓 ) =

𝛾 (𝑓 ,𝜔 𝑓 ) (𝜏𝑓 ; 𝐼 )(((((((
𝑝𝑐 (𝜏𝑔, 𝑥 | 𝜏𝑓 , 𝑧)

𝛾 (𝑔,𝜔𝑔 ) (𝜏𝑔; 𝐼 )
𝜔 𝑓 (𝐼 , 𝜏𝑓 , 𝑧)(((((((

𝑝𝑐 (𝜏𝑔, 𝑥 | 𝜏𝑓 , 𝑧)
∏

(𝛼,s) ∈dom(𝜏𝑓 )∩dom(𝜏𝑔 ) 𝑝 𝑓 (𝜏𝑓 (𝛼) | 𝜏𝑓 /𝛼)

𝛾 (𝑓 ,𝜔 𝑓 ) (𝜏𝑓 ; 𝐼 )𝛾 (𝑐,𝜔𝑐 ) (𝜏𝑔;𝜏𝑓 ) = 𝛾 (𝑔,𝜔𝑔 ) (𝜏𝑔; 𝐼 )
𝛾 (𝑓 ,𝜔 𝑓 ) (𝜏𝑓 ; 𝐼 )

𝜔 𝑓 (𝐼 , 𝜏𝑓 , 𝑧)
∏

(𝛼,s) ∈dom(𝜏𝑓 )∩dom(𝜏𝑔 ) 𝑝 𝑓 (𝜏𝑓 (𝛼) | 𝜏𝑓 /𝛼)

𝛾 (𝑓 ,𝜔 𝑓 ) (𝜏𝑓 ; 𝐼 )𝛾 (𝑐,𝜔𝑐 ) (𝜏𝑔;𝜏𝑓 ) = 𝛾 (𝑔,𝜔𝑔 ) (𝜏𝑔; 𝐼 )
∏

(𝛼,s) ∈dom(𝜏𝑓 )/dom(𝜏𝑔 )
𝑝 𝑓 (𝜏𝑓 (𝛼) | 𝜏𝑓 /𝛼)
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and so upon substituting back into the left-hand side of equation above, we will obtain an identity∫
𝑧∈𝑍

∫
𝑥∈𝑋

(
𝛾 (𝑓 ,𝜔 𝑓 ) (𝜏𝑓 ; 𝐼 )𝛾 (𝑐,𝜔𝑐 ) (𝜏𝑔;𝜏𝑓 )

)
ℎ(𝜏𝑔, 𝑥) 𝑑𝑥 𝑑𝑧 =

∫
𝑥∈𝑋

ℎ(𝜏𝑔, 𝑥) 𝛾 (𝑔,𝜔𝑔 ) (𝜏𝑔; 𝐼 )𝑑𝑥∫
𝑧∈𝑍

∫
𝑥∈𝑋

ℎ(𝜏𝑔, 𝑥) 𝛾 (𝑔,𝜔𝑔 ) (𝜏𝑔; 𝐼 )𝑑𝑥
∏

(𝛼,s) ∈dom(𝜏𝑓 )/dom(𝜏𝑔 )
𝑝 𝑓 (𝜏𝑓 (𝛼) | 𝜏𝑓 /𝛼)𝑑𝑧 =∫

𝑥∈𝑋
ℎ(𝜏𝑔, 𝑥) 𝛾 (𝑔,𝜔𝑔 ) (𝜏𝑔; 𝐼 )𝑑𝑥 .

□
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